1
|
Sawalha H, Moulton SE, Winkel A, Stiesch M, Zaferanloo B. Role of Endophytic Fungi in the Biosynthesis of Metal Nanoparticles and Their Potential as Nanomedicines. J Funct Biomater 2025; 16:129. [PMID: 40278237 PMCID: PMC12027871 DOI: 10.3390/jfb16040129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Metal nanoparticles (MNPs) produced through biosynthesis approaches have shown favourable physical, chemical, and antimicrobial characteristics. The significance of biological agents in the synthesis of MNPs has been acknowledged as a promising alternative to conventional approaches such as physical and chemical methods, which are confronted with certain challenges. To meet these challenges, the use of endophytic fungi as nano-factories for the synthesis of MNPs has become increasingly popular worldwide in recent times. This review provides an overview of the synthesis of MNPs using endophytic fungi, the mechanisms involved, and their important biomedical applications. A special focus on different biomedical applications of MNPs mediated endophytic fungi involved their antibacterial, antifungal, antiviral, and anticancer applications and their potential as drug delivery agents. Furthermore, this review highlights the significance of the use of endophytic fungi for the green synthesis of MNPs and discusses the benefits, challenges, and prospects in this field.
Collapse
Affiliation(s)
- Hanadi Sawalha
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Simon E. Moulton
- School of Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
- Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Melbourne, VIC 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, 30625 Hannover, Germany; (A.W.); (M.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, 30625 Hannover, Germany; (A.W.); (M.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
2
|
Das R, Kumar A, Singh C, Kayastha AM. Innovative synthesis approaches and health implications of organic-inorganic Nanohybrids for food industry applications. Food Chem 2025; 464:141905. [PMID: 39504907 DOI: 10.1016/j.foodchem.2024.141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Recent advancements in nanomaterials have significantly impacted various sectors, including medicine, energy, and manufacturing. Among these, organic/inorganic nanohybrids have emerged as transformative tools in the food industry. This review focuses on the innovative applications of these nanohybrids in food packaging, enzyme immobilization, and contamination detection. By combining organic and inorganic components, nanohybrids enable the customization of properties such as barrier performance, mechanical strength, and antimicrobial activity. Organic-inorganic nanohybrids offer promising solutions for the food industry, enhancing safety, quality, and processing efficiency. Examples include gold nanoparticles (AuNPs) used in biosensors for rapid detection of foodborne pathogens, graphene oxide (GO) nanosheets in advanced filtration membranes, and nanocellulose as a fat replacer in low-fat yogurt to improve texture and taste. Quantum dots (QDs) also aid in food traceability by detecting product authenticity. While these technologies showcase transformative potential, challenges like scalability, regulatory compliance, environmental impact, and potential toxicity must be addressed to ensure safe and sustainable adoption. However, to fully harness their benefits, it is crucial to thoroughly assess their toxicological profiles to mitigate potential adverse health effects. This necessitates comprehensive studies on their interactions with biological systems, dose-response relationships, and long-term impacts. Establishing standardized safety protocols and regulatory guidelines is essential to ensure that the utilization of these nanomaterials does not compromise human health while maximizing their advantages.
Collapse
Affiliation(s)
- Ranjana Das
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Avinash Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Chandan Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Rather MA, Mandal M. Attenuation of biofilm and quorum sensing regulated virulence factors of an opportunistic pathogen Pseudomonas aeruginosa by phytofabricated silver nanoparticles. Microb Pathog 2023; 185:106433. [PMID: 37913826 DOI: 10.1016/j.micpath.2023.106433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Green-synthesized nanoparticles provide an effective strategy for inhibiting microbial pathogenesis by affecting biofilm formation, quorum sensing (QS), and other surface properties of microorganisms. QS is a density-dependent communication signaling cascade that regulates biofilm formation and other pathogenic factors of Pseudomonas aeruginosa. In this context, the effect of phytofabricated silver nanoparticles (CC-AgNPs) synthesized using Cuphea carthagenensis extract on biofilm, QS, and QS-dependent virulence factors of P. aeruginosa were evaluated in this study. CC-AgNPs demonstrated significant attenuation of biofilm, QS, and QS-dependent virulence factors at sub-MICs. A significant inhibition of 88.39 ± 4.32 %, 79.64 ± 3.31 %, 73.07 ± 3.0 %, and 61.67 ± 1.5 % of biofilm formation, quorum sensing, pyocyanin, and LasB elastase, respectively was reported in the study at 20 μg/mL. The study also demonstrated a significant reduction of LasA Staphylolytic activity and 91.37 ± 1.05 % exoprotease production in comparison to untreated control. The lower concentrations of CC-AgNPs also demonstrated significant attenuation of biofilm and other virulence factors suggesting the strong potency of NPs against P. aeruginosa. XTT analysis reported the effect of CC-AgNPs on sessile cells of P. aeruginosa without impacting growth of planktonic cells at sub-MICs. Cell-proliferation study in human cell lines (HEK 293 and Caco-2 cells) demonstrated the safe nature of CC-AgNPs at tested concentrations. This study is novel in a way that environmentally friendly CC-AgNPs were used to inhibit QS at sub-MICs without killing the tested strains, therefore, could be developed as an anti-virulent drug to overcome biofilm and antimicrobial resistance problems.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, India.
| |
Collapse
|
4
|
Polymeric nanoformulation prototype based on a natural extract for the potential treatment of type 2 diabetes mellitus. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Green Synthesis of Silver Nanoparticles Coated by Water Soluble Chitosan and Its Potency as Non-Alcoholic Hand Sanitizer Formulation. MATERIALS 2022; 15:ma15134641. [PMID: 35806776 PMCID: PMC9267502 DOI: 10.3390/ma15134641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023]
Abstract
The synthesis of silver nanoparticles using plant extracts, widely known as a green synthesis method, has been extensively studied. Nanoparticles produced through this method have applications as antibacterial agents. Bacterial and viral infection can be prevented by use of antibacterial agents such as soap, disinfectants, and hand sanitizer. Silver nanoparticles represent promising hand sanitizer ingredients due to their antibacterial activity and can enable reduced use of alcohol and triclosan. This study employed silver nanoparticles synthesized using Kepok banana peel extract (Musa paradisiaca L.). Nanoparticle effectiveness as a hand sanitizer can be enhanced by coating with a biocompatible polymer such as chitosan. The characterization of silver nanoparticles was conducted using UV-Vis, with an obtained peak at 434.5 nm. SEM-EDX analysis indicated nanoparticles with a spherical morphology. Silver nanoparticles coated with chitosan were characterized through FTIR to verify the attached functional groups. Gel hand sanitizers were produced using silver nanoparticles coated with different chitosan concentrations. Several tests were undertaken to determine the gel characteristics, including pH, syneresis, and antibacterial activity. Syneresis leads to unstable gels, but was found to be inhibited by adding chitosan at a concentration of 2%. Antibacterial activity was found to increase with increase in chitosan concentration.
Collapse
|
6
|
Senthamarai Kannan M, Hari Haran PS, Sundar K, Kunjiappan S, Balakrishnan V. Fabrication of anti-bacterial cotton bandage using biologically synthesized nanoparticles for medical applications. Prog Biomater 2022; 11:229-241. [PMID: 35622299 PMCID: PMC9137450 DOI: 10.1007/s40204-022-00190-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/13/2022] [Indexed: 01/23/2023] Open
Abstract
Recently the use of plant-derived extracts for the green synthesis of nanoparticles has drawn considerable attention. In the present study silver and copper nanoparticles were synthesized using extracts of Andrographis paniculata which is found to possess various pharmacological properties. The synthesized nanoparticles were characterized using UV spectroscopy, SEM with EDS, XRD, TEM and DLS. Furthermore, an attempt is made to impregnate these nanoparticles onto cotton bandages. The structure and morphology of silver nanoparticles impregnated onto the cotton bandages were confirmed by SEM. The anti-bacterial activity of cotton bandages loaded with silver and copper nanoparticles was tested against Escherichia coli, Bacillus cereus, and Staphylococcus aureus using a modified disc diffusion assay. The results indicate that the cotton bandages biofabricated with nanoparticles exhibited anti-bacterial activity in terms of zone of inhibition of growth of tested bacteria suggesting their usage as medical textiles in various biomedical applications for the prevention of infections. Hence, the nanoparticles impregnated cotton fibers can be applied for the development of masks, aprons, etc. to protect against bacterial penetration and as well to counteract the present situation of the world.
Collapse
Affiliation(s)
- Monika Senthamarai Kannan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India
| | - Ponlakshmi S Hari Haran
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India
| | - Krishnan Sundar
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India
| | - Vanavil Balakrishnan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India.
| |
Collapse
|
7
|
Neculai-Valeanu AS, Ariton AM, Mădescu BM, Rîmbu CM, Creangă Ş. Nanomaterials and Essential Oils as Candidates for Developing Novel Treatment Options for Bovine Mastitis. Animals (Basel) 2021; 11:1625. [PMID: 34072849 PMCID: PMC8229472 DOI: 10.3390/ani11061625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Nanomaterials have been used for diagnosis and therapy in the human medical field, while their application in veterinary medicine and animal production is still relatively new. Nanotechnology, however, is a rapidly growing field, offering the possibility of manufacturing new materials at the nanoscale level, with the formidable potential to revolutionize the agri-food sector by offering novel treatment options for prevalent and expensive illnesses such as bovine mastitis. Since current treatments are becoming progressively more ineffective in resistant bacteria, the development of innovative products based on both nanotechnology and phytotherapy may directly address a major global problem, antimicrobial resistance, while providing a sustainable animal health solution that supports the production of safe and high-quality food products. This review summarizes the challenges encountered presently in the treatment of bovine mastitis, emphasizing the possibility of using new-generation nanomaterials (e.g., biological synthesized nanoparticles and graphene) and essential oils, as candidates for developing novel treatment options for bovine mastitis.
Collapse
Affiliation(s)
- Andra Sabina Neculai-Valeanu
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
| | - Adina Mirela Ariton
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Bianca Maria Mădescu
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Şteofil Creangă
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| |
Collapse
|