1
|
Yang Z, Wu J, Wang Q, Chen W, Shi H, Shi Y, Yang J, Li N, Sun D, Jing R. QTL mapping for seed vigor-related traits under artificial aging in common wheat in two introgression line (IL) populations. PeerJ 2024; 12:e17778. [PMID: 39301057 PMCID: PMC11412226 DOI: 10.7717/peerj.17778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 06/28/2024] [Indexed: 09/22/2024] Open
Abstract
Background Seed vigor recognized as a quantitative trait is of particular importance for agricultural production. However, limited knowledge is available for understanding genetic basis of wheat seed vigor. Methods The aim of this study was to identify quantitative trait loci (QTL) responsible for 10 seed vigor-related traits representing multiple aspects of seed-vigor dynamics during artificial aging with 6 different treatment times (0, 24, 36, 48, 60, and 72 h) under controlled conditions (48 °C, 95% humidity, and dark). The mapping populations were two wheat introgression lines (IL-1 and IL-2) derived from recipient parent (Lumai 14) and donor parent (Shaanhan 8675 or Jing 411). Results A total of 26 additive QTLs and 72 pairs of epistatic QTLs were detected for wheat seed-vigor traits. Importantly, chromosomes 1B and 7B contained several co-located QTLs, and chromosome 2A had a QTL-rich region near the marker Xwmc667, indicating that these QTLs may affect wheat seed vigor with pleiotropic effects. Furthermore, several possible consistent QTLs (hot-spot regions) were examined by comparison analysis of QTLs detected in this study and reported previously. Finally, a set of candidate genes for wheat seed vigor were predicted to be involved in transcription regulation, carbohydrate and lipid metabolism. Conclusion The present findings lay new insights into the mechanism underlying wheat seed vigor, providing valuable information for wheat genetic improvement especially marker-assisted breeding to increase seed vigor and consequently achieve high grain yield despite of further investigation required.
Collapse
Affiliation(s)
- Zhenrong Yang
- College of Agriculture, Shanxi Agricultural University, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Jinzhong, China
| | - Jirong Wu
- College of Agriculture, Shanxi Agricultural University, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Jinzhong, China
| | - Qiyu Wang
- College of Agriculture, Shanxi Agricultural University, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Jinzhong, China
| | - Weiguo Chen
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Huawei Shi
- College of Agriculture, Shanxi Agricultural University, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Jinzhong, China
| | - Yugang Shi
- College of Agriculture, Shanxi Agricultural University, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Jinzhong, China
| | - Jinwen Yang
- College of Agriculture, Shanxi Agricultural University, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Jinzhong, China
| | - Ning Li
- College of Agriculture, Shanxi Agricultural University, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Jinzhong, China
| | - Daizhen Sun
- College of Agriculture, Shanxi Agricultural University, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Jinzhong, China
| | - Ruilian Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
2
|
Misra G, Joshi-Saha A. Genetic mapping and transcriptome profiling of a chickpea (Cicer arietinum L.) mutant identifies a novel locus (CaEl) regulating organ size and early vigor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1401-1420. [PMID: 37638656 DOI: 10.1111/tpj.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Chickpea is among the top three legumes produced and consumed worldwide. Early plant vigor, characterized by good germination and rapid seedling growth, is an important agronomic trait in many crops including chickpea, and shows a positive correlation with seed size. In this study, we report a gamma-ray-induced chickpea mutant with a larger organ and seed size. The mutant (elm) exhibits increased early vigor and contains higher proline that contributes to a better tolerance under salt stress at germination, seedling, and early vegetative phase. The trait is governed as monogenic recessive, with wild-type allele being incompletely dominant over the mutant. Genetic mapping of this locus (CaEl) identified it as a previously uncharacterized gene (101503252) in chromosome 1 of the chickpea genome. There is a deletion of this gene in the mutant with a complete loss of expression. In silico analysis suggests that the gene is present as a single copy in chickpea and related legumes of the galegoid clade. In the mutant, cell division and expansion are affected. Transcriptome profiling identified differentially regulated transcripts related to cell division, expansion, cell wall organization, and metabolism in the mutant. The mutant can be exploited in chickpea breeding programs for increasing plant vigor and seed size.
Collapse
Affiliation(s)
- Golu Misra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Archana Joshi-Saha
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
3
|
Elakhdar A, El-Naggar AA, Kubo T, Kumamaru T. Genome-wide transcriptomic and functional analyses provide new insights into the response of spring barley to drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14089. [PMID: 38148212 DOI: 10.1111/ppl.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Drought is a major abiotic stress that impairs the physiology and development of plants, ultimately leading to crop yield losses. Drought tolerance is a complex quantitative trait influenced by multiple genes and metabolic pathways. However, molecular intricacies and subsequent morphological and physiological changes in response to drought stress remain elusive. Herein, we combined morpho-physiological and comparative RNA-sequencing analyses to identify core drought-induced marker genes and regulatory networks in the barley cultivar 'Giza134'. Based on field trials, drought-induced declines occurred in crop growth rate, relative water content, leaf area duration, flag leaf area, concentration of chlorophyll (Chl) a, b and a + b, net photosynthesis, and yield components. In contrast, the Chl a/b ratio, stoma resistance, and proline concentration increased significantly. RNA-sequence analysis identified a total of 2462 differentially expressed genes (DEGs), of which 1555 were up-regulated and 907 were down-regulated in response to water-deficit stress (WD). Comparative transcriptomics analysis highlighted three unique metabolic pathways (carbohydrate metabolism, iron ion binding, and oxidoreductase activity) as containing genes differentially expressed that could mitigate water stress. Our results identified several drought-induced marker genes belonging to diverse physiochemical functions like chlorophyll concentration, photosynthesis, light harvesting, gibberellin biosynthetic, iron homeostasis as well as Cis-regulatory elements. These candidate genes can be utilized to identify gene-associated markers to develop drought-resilient barley cultivars over a short period of time. Our results provide new insights into the understanding of water stress response mechanisms in barley.
Collapse
Affiliation(s)
- Ammar Elakhdar
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ahmed A El-Naggar
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Takahiko Kubo
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Toshihiro Kumamaru
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Capo-chichi LJA, Elakhdar A, Kubo T, Nyachiro J, Juskiw P, Capettini F, Slaski JJ, Ramirez GH, Beattie AD. Genetic diversity and population structure assessment of Western Canadian barley cooperative trials. FRONTIERS IN PLANT SCIENCE 2023; 13:1006719. [PMID: 36699829 PMCID: PMC9868428 DOI: 10.3389/fpls.2022.1006719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Studying the population structure and genetic diversity of historical datasets is a proposed use for association analysis. This is particularly important when the dataset contains traits that are time-consuming or costly to measure. A set of 96 elite barley genotypes, developed from eight breeding programs of the Western Canadian Cooperative Trials were used in the current study. Genetic diversity, allelic variation, and linkage disequilibrium (LD) were investigated using 5063 high-quality SNP markers via the Illumina 9K Barley Infinium iSelect SNP assay. The distribution of SNPs markers across the barley genome ranged from 449 markers on chromosome 1H to 1111 markers on chromosome 5H. The average polymorphism information content (PIC) per locus was 0.275 and ranged from 0.094 to 0.375. Bayesian clustering in STRUCTURE and principal coordinate analysis revealed that the populations are differentiated primarily due to the different breeding program origins and ear-row type into five subpopulations. Analysis of molecular variance based on PhiPT values suggested that high values of genetic diversity were observed within populations and accounted for 90% of the total variance. Subpopulation 5 exhibited the most diversity with the highest values of the diversity indices, which represent the breeding program gene pool of AFC, AAFRD, AU, and BARI. With increasing genetic distance, the LD values, expressed as r2, declined to below the critical r2 = 0.18 after 3.91 cM, and the same pattern was observed on each chromosome. Our results identified an important pattern of genetic diversity among the Canadian barley panel that was proposed to be representative of target breeding programs and may have important implications for association mapping in the future. This highlight, that efforts to identify novel variability underlying this diversity may present practical breeding opportunities to develop new barley genotypes.
Collapse
Affiliation(s)
- Ludovic J. A. Capo-chichi
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ammar Elakhdar
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Takahiko Kubo
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Joseph Nyachiro
- Field Crop Development Centre, Alberta Agriculture and Forestry, Lacombe, AB, Canada
| | - Patricia Juskiw
- Field Crop Development Centre, Alberta Agriculture and Forestry, Lacombe, AB, Canada
| | - Flavio Capettini
- Field Crop Development Centre, Alberta Agriculture and Forestry, Lacombe, AB, Canada
| | - Jan J. Slaski
- Ecosystems and Plant Sciences, InnoTech Alberta Inc., Vegreville, AB, Canada
| | - Guillermo Hernandez Ramirez
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Aaron D. Beattie
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Akbari M, Sabouri H, Sajadi SJ, Yarahmadi S, Ahangar L, Abedi A, Katouzi M. Mega Meta-QTLs: A Strategy for the Production of Golden Barley (Hordeum vulgare L.) Tolerant to Abiotic Stresses. Genes (Basel) 2022; 13:genes13112087. [PMID: 36360327 PMCID: PMC9690463 DOI: 10.3390/genes13112087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Abiotic stresses cause a significant decrease in productivity and growth in agricultural products, especially barley. Breeding has been considered to create resistance against abiotic stresses. Pyramiding genes for tolerance to abiotic stresses through selection based on molecular markers connected to Mega MQTLs of abiotic tolerance can be one of the ways to reach Golden Barley. In this study, 1162 original QTLs controlling 116 traits tolerant to abiotic stresses were gathered from previous research and mapped from various populations. A consensus genetic map was made, including AFLP, SSR, RFLP, RAPD, SAP, DArT, EST, CAPS, STS, RGA, IFLP, and SNP markers based on two genetic linkage maps and 26 individual linkage maps. Individual genetic maps were created by integrating individual QTL studies into the pre-consensus map. The consensus map covered a total length of 2124.43 cM with an average distance of 0.25 cM between markers. In this study, 585 QTLs and 191 effective genes related to tolerance to abiotic stresses were identified in MQTLs. The most overlapping QTLs related to tolerance to abiotic stresses were observed in MQTL6.3. Furthermore, three MegaMQTL were identified, which explained more than 30% of the phenotypic variation. MQTLs, candidate genes, and linked molecular markers identified are essential in barley breeding and breeding programs to develop produce cultivars resistant to abiotic stresses.
Collapse
Affiliation(s)
- Mahjoubeh Akbari
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Hossein Sabouri
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
- Correspondence: (H.S.); (M.K.); Tel.: +98-9111438917 (H.S.); +41-779660486 (M.K.)
| | - Sayed Javad Sajadi
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Saeed Yarahmadi
- Horticulture-Crops Reseaech Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan 4969186951, Iran
| | - Leila Ahangar
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Amin Abedi
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht 4199613776, Iran
| | - Mahnaz Katouzi
- Crop Génome Dynamics Group, Agroscope Changins, 1260 Nyon, Switzerland
- Correspondence: (H.S.); (M.K.); Tel.: +98-9111438917 (H.S.); +41-779660486 (M.K.)
| |
Collapse
|
6
|
Zheng Z, Hu H, Gao S, Zhou H, Luo W, Kage U, Liu C, Jia J. Leaf thickness of barley: genetic dissection, candidate genes prediction and its relationship with yield-related traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1843-1854. [PMID: 35348823 DOI: 10.1007/s00122-022-04076-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In this first genetic study on assessing leaf thickness directly in cereals, major and environmentally stable QTL were detected in barley and candidate genes underlying a major locus were identified. Leaf thickness (LT) is an important characteristic affecting leaf functions which have been intensively studied. However, as LT has a small dimension in many plant species and technically difficult to measure, previous studies on this characteristic are often based on indirect estimations. In the first study of detecting QTL controlling LT by directly measuring the characteristic in barley, large and stable loci were detected from both field and glasshouse trials conducted in different cropping seasons by assessing a population of 201 recombinant inbred lines. Four loci (locating on chromosome arms 2H, 3H, 5H and 6H, respectively) were consistently detected for flag leaf thickness (FLT) in each of these trials. The one on 6H had the largest effect, with a maximum LOD 9.8 explaining up to 20.9% of phenotypic variance. FLT does not only show strong interactions with flag leaf width and flag leaf area but has also strong correlations with fertile tiller number, spike row types, kernel number per spike and heading date. Though with reduced efficiency, these loci were also detectable from assessing second last leaf of fully grown plants or even from assessing the third leaves of seedlings. Taking advantage of the high-quality genome assemblies for both parents of the mapping population used in this study, three candidate genes underlying the 6H QTL were predicted based on orthologous analysis. These results do not only broaden our understanding on genetic basis of LT and its relationship with other traits in cereal crops but also form the bases for cloning and functional analysis of genes regulating LT in barley.
Collapse
Affiliation(s)
- Zhi Zheng
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Haiyan Hu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Shang Gao
- School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Hong Zhou
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Wei Luo
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Udaykumar Kage
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia.
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
Overview of Identified Genomic Regions Associated with Various Agronomic and Physiological Traits in Barley under Abiotic Stresses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Climate change has caused breeders to focus on varieties that are able to grow under unfavorable conditions, such as drought, high and low temperatures, salinity, and other stressors. In recent decades, progress in biotechnology and its related tools has provided opportunities to dissect and decipher the genetic basis of tolerance to various stress conditions. One such approach is the identification of genomic regions that are linked with specific or multiple characteristics. Cereal crops have a key role in supplying the energy required for human and animal populations. However, crop products are dramatically affected by various environmental stresses. Barley (Hordeum vulgare L.) is one of the oldest domesticated crops that is cultivated globally. Research has shown that, compared with other cereals, barley is well adapted to various harsh environmental conditions. There is ample literature regarding these responses to abiotic stressors, as well as the genomic regions associated with the various morpho-physiological and biochemical traits of stress tolerance. This review focuses on (i) identifying the tolerance mechanisms that are important for stable growth and development, and (ii) the applicability of QTL mapping and association analysis in identifying genomic regions linked with stress-tolerance traits, in order to help breeders in marker-assisted selection (MAS) to quickly screen tolerant germplasms in their breeding cycles. Overall, the information presented here will inform and assist future barley breeding programs.
Collapse
|