1
|
Gu X, Zhou L, Pu Y, Jiang F, Yang L, Zhang T, Zhou T, Wang X. Genome-wide identification and transcriptional expression profiles of the transcription factor WRKY in Gentiana macrophylla. Mol Biol Rep 2025; 52:344. [PMID: 40146451 DOI: 10.1007/s11033-025-10452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
Gentiana macrophylla Pall., a valuable Chinese traditional medicinal herb, exhibits notable anti-inflammatory and analgesic effects. The WRKY transcription factor plays a pivotal role in regulating development and stress responses. Although the WRKY family extensively characterized in diverse plant species, a comprehensive analysis of this gene family in G. macrophylla remains unexplored. In this study, we systematically identified 84 WRKY genes (GmWRKYs) from the G. macrophylla genome and classified them into three primary clades based on phylogenetic analysis. Further characterization of motif architectures, gene structures, chromosomal distributions, and syntenic relationships revealed conserved evolutionary patterns within this gene family. Notably, both phylogenetic evidence and whole-genome duplication (WGD) event analyses suggested that GmWRKYs originated from a common ancestor and underwent expansion through lineage-specific WGDs. RNA-seq and qRT-PCR analysis revealed that GmWRKYs had different expression patterns in different tissues of G. macrophylla. Weighted gene co-expression network analysis (WGCNA) further identified significant co-expression relationships between GmWRKYs and key genes involved in iridoid biosynthesis. Our results provide a potential theoretical basis for future investigation on the role of WRKY genes in the biosynthesis of iridoid in G. macrophylla.
Collapse
Affiliation(s)
- Xiaohui Gu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China
| | - Lipan Zhou
- Department of Pharmacy, Ninth Hospital of Xi'an, Xi'an, 710054, China
| | - Yang Pu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fan Jiang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianyi Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Zhang G, Li W, Han T, Huang T, Sun L, Hao F. GhWRKY207 improves drought tolerance through promoting the expression of GhCSD3 and GhFSD2 in Gossypium hirsutum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112392. [PMID: 39809423 DOI: 10.1016/j.plantsci.2025.112392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/25/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors are essential regulators of drought tolerance in multiple plants. However, whether and how GhWRKY207 modulates cotton response to drought stress is unclear. In this study, we determined that GhWRKY207 expression was high in leaves and induced by drought stress. The gene encoded a nuclear protein that had transcriptional activation activity. Silencing GhWRKY207 by virus-induced gene silencing (VIGS) caused significant reduction in drought tolerance of cotton plants. Consistently, overexpression of GhWRKY207 in Arabidopsis thaliana wild type (WT) plants clearly enhanced their drought tolerance. Moreover, GhWRKY207 VIGS plants had notably increased malondialdehyde (MDA) contents, electrolyte leakage percentages and O2·- accumulation rates whereas GhWRKY207 overexpression lines showed markedly decreased levels of the three parameters compared to their corresponding controls under water deficit conditions. Additionally, GhWRKY207 enhanced superoxide dismutase (SOD) activity by directly activating the expression of GhCu/Zn-SOD3 (GhCSD3) and GhFe-SOD2 (GhFSD2) genes. Silencing GhCSD3 or GhFSD2 also markedly reduced drought tolerance of cotton plants. Taken together, these results suggest that GhWRKY207 positively regulates drought tolerance by inducing the expression of GhCSD3 and GhFSD2 in Gossypium hirsutum.
Collapse
Affiliation(s)
- Gaofeng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Weichao Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Tong Han
- College of Advanced Agricultural Sciences, Weifang University, Weifang 261061, China
| | - Tianyi Huang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Lirong Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China.
| | - Fushun Hao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China.
| |
Collapse
|
3
|
Tan Z, Lu D, Yu Y, Li L, Xu L, Dong W, Yang Q, Li C, Wan X, Liang H. Genome-wide identification, characterization and expression analysis of WRKY transcription factors under abiotic stresses in Carthamus tinctorius L. BMC PLANT BIOLOGY 2025; 25:81. [PMID: 39838282 PMCID: PMC11748509 DOI: 10.1186/s12870-025-06079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND WRKY transcription factors constitute one of the largest families of plant transcriptional regulators, playing pivotal roles in plant responses to biotic and abiotic stresses, as well as in hormonal signaling and secondary metabolism regulation. However, a comprehensive analysis of the WRKY family in Carthamus tinctorius (safflower) is lacking. This study aims to identify and characterize WRKY genes in safflower to enhance understanding of their roles in stress responses and metabolic regulation. Safflower, valued for its ornamental, medicinal, and culinary uses, exhibits significant resilience to salt, alkali, and drought. By elucidating the functions and expression patterns of WRKY genes, we aim to enhance breeding strategies for improved stress tolerance and metabolic traits in crops. RESULTS In this study, we identified 84 WRKY genes within the safflower genome, and classified them into three primary groups (Groups I, II, and III) based on molecular structure and phylogenetic relationships. Group II was further subdivided into five subgroups (II-a, II-b, II-c, II-d, and II-e). Gene structure, conserved domain, motif, cis-elements, and expression profiling were performed. Syntenic analysis revealed that there were 27 pairs of repetitive fragments. Expression profiles of CtWRKY genes were assessed across diverse tissues, colored cultivars, and abiotic stresses such as ABA, drought, and cold conditions. Several CtWRKY genes (e.g., CtWRKY44, CtWRKY63, CtWRKY65, CtWRKY70 and CtWRKY72) exhibited distinct expression patterns in response to cold stress and during different developmental stages. Additionally, CtWRKY13, CtWRKY69, CtWRKY29, CtWRKY56, and CtWRKY36 were upregulated across different flower colors. The expression patterns of CtWRKY48, CtWRKY58, and CtWRKY70 varied among safflower cultivars and flower colors. After exposure to drought stress, the expression levels of CtWRKY29 and CtWRKY58 were downregulated, while those of CtWRKY56 and CtWRKY62 were upregulated. CONCLUSION This study identified 84 WRKY genes in Carthamus tinctorius and classified them into three groups, with detailed analyses of their structure, conserved domains, motifs, and expression profiles under various stresses. Notably, several WRKY genes such as CtWRKY44, CtWRKY63, and CtWRKY72 displayed significant expression changes under cold stress, while CtWRKY56 and CtWRKY62 were responsive to drought stress. These findings highlight the critical roles of specific WRKY genes in abiotic stress tolerance and developmental regulation in safflower.
Collapse
Affiliation(s)
- Zhengwei Tan
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Dandan Lu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
| | - Yongliang Yu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
| | - Lei Li
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Lanjie Xu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Wei Dong
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Qing Yang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Chunming Li
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijng, 100700, China
| | - Huizhen Liang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China.
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China.
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
4
|
Wang J, Gong Y, Li M, Bai Y, Wu T. A CsWRKY48 Gene from Tea Plants Intercropped with Chinese Chestnut Plays an Important Role in Resistance to Biotic and Abiotic Stresses. Int J Mol Sci 2024; 25:13526. [PMID: 39769291 PMCID: PMC11677473 DOI: 10.3390/ijms252413526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Tea plant (Camellia sinensis) is an important horticultural crop. The quality and productivity of tea plants is always threatened by various adverse environmental factors. Numerous studies have shown that intercropping tea plants with other plants can greatly improve the quality of their products. The intercropping system of Chinese chestnut (Castanea mollissima) and tea plants is an agricultural planting model in which the two species are grown on the same piece of land following a specific spacing and cultivation method. Based on a comparative transcriptome analysis between Chinese chestnut tea intercropped plantations and a pure tea plantation, it was found that the expression levels of the WRKY genes were significantly upregulated under the intercropping pattern. In this study, we cloned a candidate gene, CsWRKY48, and verified its functions in tobacco (Nicotiana tabacum) via heterologous transformation. The contents of protective enzyme activities and osmoregulatory substances were significantly increased, and the trichomes length and density were improved in the transgenic tobacco lines. This phenotype offered an enhanced resistance to both low temperatures and aphids for transgenic lines overexpressing CsWRKY48. Further analysis indicated that the CsWRKY48 transcription factor might interact with other regulators, such as CBF, ERF, MYC, and MYB, to enhance the resistance of tea plants to biotic and abiotic stresses. These findings not only confirm the elevated resistance of tea plants under intercropping, but also indicate a potential regulatory network mediated by the WRKY transcription factor.
Collapse
Affiliation(s)
| | | | | | | | - Tian Wu
- College of Landscape Architecture and Horticulture, Southwest Forestry University, Kunming 650224, China; (J.W.); (Y.G.); (M.L.); (Y.B.)
| |
Collapse
|
5
|
Zhang S, Cai X, Wei J, Wang H, Liu C, Li X, Tang L, Zhou X, Zhang J. GhWRKY40 Interacts with an Asparaginase GhAP D6 Involved in Fiber Development in Upland Cotton ( Gossypium hirsutum L.). Genes (Basel) 2024; 15:979. [PMID: 39202340 PMCID: PMC11353873 DOI: 10.3390/genes15080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Fiber quality improvement is a primary goal in cotton breeding. Identification of fiber quality-related genes and understanding the underlying molecular mechanisms are essential prerequisites. Previously, studies determined that silencing the gene GhWRKY40 resulted in longer cotton fibers; however, both the underlying mechanisms and whether this transcription factor is additionally involved in the regulation of cotton fiber strength/fineness are unknown. In the current study, we verified that GhWRKY40 influences the fiber strength, fiber fineness, and fiber surface structure by using virus-induced gene silencing (VIGS). Potential proteins that may interact with the nucleus-localized GhWRKY40 were screened in a yeast two-hybrid (Y2H) nuclear-system cDNA library constructed from fibers at 0, 10, and 25 days post-anthesis (DPA) in two near-isogenic lines differing in fiber length and strength. An aspartyl protease/asparaginase-related protein, GhAPD6, was identified and confirmed by Y2H and split-luciferase complementation assays. The expression of GhAPD6 was approximately 30-fold higher in the GhWRKY40-VIGS lines at 10 DPA and aspartyl protease activity was significantly upregulated in the GhWRKY40-VIGS lines at 10-20 DPA. This study suggested that GhWRKY40 may interact with GhAPD6 to regulate fiber development in cotton. The results provide a theoretical reference for the selection and breeding of high-quality cotton fibers assisted by molecular technology.
Collapse
Affiliation(s)
- Sujun Zhang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China; (S.Z.); (X.C.); (H.W.); (C.L.); (X.L.); (L.T.); (X.Z.)
- Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, China
| | - Xiao Cai
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China; (S.Z.); (X.C.); (H.W.); (C.L.); (X.L.); (L.T.); (X.Z.)
- Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, China
| | - Jingyan Wei
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Haitao Wang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China; (S.Z.); (X.C.); (H.W.); (C.L.); (X.L.); (L.T.); (X.Z.)
- Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, China
| | - Cunjing Liu
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China; (S.Z.); (X.C.); (H.W.); (C.L.); (X.L.); (L.T.); (X.Z.)
- Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, China
| | - Xinghe Li
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China; (S.Z.); (X.C.); (H.W.); (C.L.); (X.L.); (L.T.); (X.Z.)
- Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, China
| | - Liyuan Tang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China; (S.Z.); (X.C.); (H.W.); (C.L.); (X.L.); (L.T.); (X.Z.)
- Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, China
| | - Xiaodong Zhou
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China; (S.Z.); (X.C.); (H.W.); (C.L.); (X.L.); (L.T.); (X.Z.)
- Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, China
| | - Jianhong Zhang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China; (S.Z.); (X.C.); (H.W.); (C.L.); (X.L.); (L.T.); (X.Z.)
- Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, China
| |
Collapse
|
6
|
Liu L, Grover CE, Kong X, Jareczek J, Wang X, Si A, Wang J, Yu Y, Chen Z. Expression profile analysis of cotton fiber secondary cell wall thickening stage. PeerJ 2024; 12:e17682. [PMID: 38993976 PMCID: PMC11238726 DOI: 10.7717/peerj.17682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
To determine the genes associated with the fiber strength trait in cotton, three different cotton cultivars were selected: Sea Island cotton (Xinhai 32, with hyper-long fibers labeled as HL), and upland cotton (17-24, with long fibers labeled as L, and 62-33, with short fibers labeled as S). These cultivars were chosen to assess fiber samples with varying qualities. RNA-seq technology was used to analyze the expression profiles of cotton fibers at the secondary cell wall (SCW) thickening stage (20, 25, and 30 days post-anthesis (DPA)). The results showed that a large number of differentially expressed genes (DEGs) were obtained from the three assessed cotton cultivars at different stages of SCW development. For instance, at 20 DPA, Sea Island cotton (HL) had 6,215 and 5,364 DEGs compared to upland cotton 17-24 (L) and 62-33 (S), respectively. Meanwhile, there were 1,236 DEGs between two upland cotton cultivars, 17-24 (L) and 62-33 (S). Gene Ontology (GO) term enrichment identified 42 functions, including 20 biological processes, 11 cellular components, and 11 molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified several pathways involved in SCW synthesis and thickening, such as glycolysis/gluconeogenesis, galactose metabolism, propanoate metabolism, biosynthesis of unsaturated fatty acids pathway, valine, leucine and isoleucine degradation, fatty acid elongation pathways, and plant hormone signal transduction. Through the identification of shared DEGs, 46 DEGs were found to exhibit considerable expressional differences at different fiber stages from the three cotton cultivars. These shared DEGs have functions including REDOX enzymes, binding proteins, hydrolases (such as GDSL thioesterase), transferases, metalloproteins (cytochromatin-like genes), kinases, carbohydrates, and transcription factors (MYB and WRKY). Therefore, RT-qPCR was performed to verify the expression levels of nine of the 46 identified DEGs, an approach which demonstrated the reliability of RNA-seq data. Our results provided valuable molecular resources for clarifying the cell biology of SCW biosynthesis during fiber development in cotton.
Collapse
Affiliation(s)
- Li Liu
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xianhui Kong
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Josef Jareczek
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xuwen Wang
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Aijun Si
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Juan Wang
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Yu Yu
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Zhiwen Chen
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong, China
| |
Collapse
|
7
|
Zhang S, Wang H, Li X, Tang L, Cai X, Liu C, Zhang X, Zhang J. Aspartyl proteases identified as candidate genes of a fiber length QTL, qFL D05, that regulates fiber length in cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:59. [PMID: 38407588 DOI: 10.1007/s00122-024-04559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/20/2024] [Indexed: 02/27/2024]
Abstract
KEY MESSAGE GhAP genes were identified as the candidates involved in cotton fiber length under the scope of fine mapping a stable fiber length QTL, qFLD05. Moreover, the transcription factor GhWRKY40 positively regulated GhAP3 to decrease fiber length. Fiber length (FL) is an economically important fiber quality trait. Although several genes controlling cotton fiber development have been identified, our understanding of this process remains limited. In this study, an FL QTL (qFLD05) was fine-mapped to a 216.9-kb interval using a secondary F2:3 population derived from the upland hybrid cultivar Ji1518. This mapped genomic segment included 15 coding genes, four of which were annotated as aspartyl proteases (GhAP1-GhAP4). GhAPs were identified as candidates for qFLD05 as the sequence variations in GhAPs were associated with FL deviations in the mapping population, and functional validation of GhAP3 and GhAP4 indicated a longer FL following decreases in their expression levels through virus-induced gene silencing (VIGS). Subsequently, the potential involvement of GhWRKY40 in the regulatory network was revealed: GhWRKY40 positively regulated GhAP3's expression according to transcriptional profiling, VIGS, yeast one-hybrid assays and dual-luciferase experiments. Furthermore, alterations in the expression of the eight previously reported cotton FL-responsive genes from the above three VIGS lines (GhAP3, GhAP4 and GhWRKY40) implied that MYB5_A12 was involved in the GhWRKY40-GhAP network. In short, we unveiled the unprecedented FL regulation roles of GhAPs in cotton, which was possibly further regulated by GhWRKY40. These findings will reveal the genetic basis of FL development associated with qFLD05 and be beneficial for the marker-assisted selection of long-staple cotton.
Collapse
Affiliation(s)
- Sujun Zhang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Haitao Wang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Xinghe Li
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Liyuan Tang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Xiao Cai
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Cunjing Liu
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Xiangyun Zhang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Jianhong Zhang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
8
|
Comparative phylogenomic analysis of 5’is-regulatory elements (CREs) of miR160 gene family in diploid and allopolyploid cotton (Gossypium) species. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
9
|
Du P, Wu Q, Liu Y, Cao X, Yi W, Jiao T, Hu M, Huang Y. WRKY transcription factor family in lettuce plant ( Lactuca sativa): Genome-wide characterization, chromosome location, phylogeny structures, and expression patterns. PeerJ 2022; 10:e14136. [PMID: 36275470 PMCID: PMC9586095 DOI: 10.7717/peerj.14136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023] Open
Abstract
WRKY transcription factors (TF) have been identified in many plant species and play critical roles in multiple stages of growth and development and under various stress conditions. As one of the most popular vegetable crops, asparagus lettuce has important medicinal and nutritional value. However, study of WRKY TFs family in asparagus lettuce is limited. With the lettuce (Lactuca sativa L.) genome publication, we identified 76 WRKY TFs and analyzed structural characteristics, phylogenetic relationships, chromosomal distribution, interaction network, and expression profiles. The 76 LsWRKY TFs were phylogenetically classified as Groups I, II (IIa-IIe), and III. Cis element analysis revealed complex regulatory relationships of LsWRKY genes in response to different biological progresses. Interaction network analysis indicated that LsWRKY TFs could interact with other proteins, such as SIB (sigma factor binding protein), WRKY TFs, and MPK. The WRKYIII subfamily genes showed different expression patterns during the progress of asparagus lettuce stem enlargement. According to qRT-PCR analysis, abiotic stresses (drought, salt, low temperature, and high temperature) and phytohormone treatment could induce specific LsWRKYIII gene expression. These results will provide systematic and comprehensive information on LsWRKY TFs and lay the foundation for further clarification of the regulatory mechanism of LsWRKY, especially LsWRKYIII TFs, involved in stress response and the progress of plant growth and development.
Collapse
Affiliation(s)
- Ping Du
- Linyi University, Linyi, China
| | | | | | - Xue Cao
- Linyi University, Linyi, China
| | | | | | | | | |
Collapse
|
10
|
Zhang J, Mei H, Lu H, Chen R, Hu Y, Zhang T. Transcriptome Time-Course Analysis in the Whole Period of Cotton Fiber Development. FRONTIERS IN PLANT SCIENCE 2022; 13:864529. [PMID: 35463423 PMCID: PMC9022538 DOI: 10.3389/fpls.2022.864529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Gossypium hirsutum and Gossypium barbadense are the widely cultivated tetraploid cottons around the world, which evolved great differences in the fiber yield and quality due to the independent domestication process. To reveal the genetic basis of the difference, we integrated 90 samples from ten time points during the fiber developmental period for investigating the dynamics of gene expression changes associated with fiber in G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124 and acc. 3-79. Globally, 44,484 genes expressed in all three cultivars account for 61.14% of the total genes. About 61.39% (N = 3,412) of the cotton transcription factors were involved in fiber development, which consisted of 58 cotton TF families. The differential analysis of intra- and interspecies showed that 3 DPA had more expression changes. To discover the genes with temporally changed expression profiles during the whole fiber development, 1,850 genes predominantly expressed in G. hirsutum and 1,050 in G. barbadense were identified, respectively. Based on the weighted gene co-expression network and time-course analysis, several candidate genes, mainly involved in the secondary cell wall synthesis and phytohormones, were identified in this study, underlying possibly the transcriptional regulation and molecular mechanisms of the fiber quality differences between G. barbadense and G. hirsutum. The quantitative real-time PCR validation of the candidate genes was consistent with the RNA-seq data. Our study provides a strong rationale for the analysis of gene function and breeding of high-quality cotton.
Collapse
|
11
|
Luján MA, Soria-García Á, Claver A, Lorente P, Rubio MC, Picorel R, Alfonso M. Different Cis-Regulatory Elements Control the Tissue-Specific Contribution of Plastid ω-3 Desaturases to Wounding and Hormone Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:727292. [PMID: 34777414 PMCID: PMC8578140 DOI: 10.3389/fpls.2021.727292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/04/2021] [Indexed: 05/13/2023]
Abstract
Trienoic fatty acids are essential constituents of biomembranes and precursors of jasmonates involved in plant defense responses. Two ω-3 desaturases, AtFAD7 and AtFAD8, synthetize trienoic fatty acids in the plastid. Promoter:GUS and mutagenesis analysis was used to identify cis-elements controlling AtFAD7 and AtFAD8 basal expression and their response to hormones or wounding. AtFAD7 promoter GUS activity was much higher than that of AtFAD8 in leaves, with specific AtFAD7 expression in the flower stamen and pistil and root meristem and vasculature. This specific tissue and organ expression of AtFAD7 was controlled by different cis-elements. Thus, promoter deletion and mutagenesis analysis indicated that WRKY proteins might be essential for basal expression of AtFAD7 in leaves. Two MYB target sequences present in the AtFAD7 promoter might be responsible for its expression in the flower stamen and stigma of the pistil and in the root meristem, and for the AtFAD7 wound-specific response. Two MYB target sequences detected in the distal region of the AtFAD8 gene promoter seemed to negatively control AtFAD8 expression, particularly in true leaves and flowers, suggesting that MYB transcription factors act as repressors of AtFAD8 gene basal expression, modulating the different relative abundance of both plastid ω-3 desaturases at the transcriptional level. Our data showed that the two ABA repression sequences detected in the AtFAD7 promoter were functional, suggesting an ABA-dependent mechanism involved in the different regulation of both ω-3 plastid desaturases. These results reveal the implication of different signaling pathways for the concerted regulation of trienoic fatty acid content in Arabidopsis.
Collapse
|