1
|
Barragan AC, Collenberg M, Schwab R, Kersten S, Kerstens MHL, Požárová D, Bezrukov I, Bemm F, Kolár F, Weigel D. Deleterious phenotypes in wild Arabidopsis arenosa populations are common and linked to runs of homozygosity. G3 (BETHESDA, MD.) 2024; 14:jkad290. [PMID: 38124484 PMCID: PMC10917499 DOI: 10.1093/g3journal/jkad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/07/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
In this study, we aimed to systematically assess the frequency at which potentially deleterious phenotypes appear in natural populations of the outcrossing model plant Arabidopsis arenosa, and to establish their underlying genetics. For this purpose, we collected seeds from wild A. arenosa populations and screened over 2,500 plants for unusual phenotypes in the greenhouse. We repeatedly found plants with obvious phenotypic defects, such as small stature and necrotic or chlorotic leaves, among first-generation progeny of wild A. arenosa plants. Such abnormal plants were present in about 10% of maternal sibships, with multiple plants with similar phenotypes in each of these sibships, pointing to a genetic basis of the observed defects. A combination of transcriptome profiling, linkage mapping and genome-wide runs of homozygosity patterns using a newly assembled reference genome indicated a range of underlying genetic architectures associated with phenotypic abnormalities. This included evidence for homozygosity of certain genomic regions, consistent with alleles that are identical by descent being responsible for these defects. Our observations suggest that deleterious alleles with different genetic architectures are segregating at appreciable frequencies in wild A. arenosa populations.
Collapse
Affiliation(s)
- A Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- The Sainsbury Laboratory, Norwich NR4 7UH, UK
| | - Maximilian Collenberg
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Catalent, 73614 Schorndorf, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Sonja Kersten
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Institute of Plant Breeding, University of Hohenheim, 70599 Stuttgart, Germany
| | - Merijn H L Kerstens
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Department of Plant Developmental Biology, Wageningen University and Research, 6708 PB, Wageningen, Netherlands
| | - Doubravka Požárová
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic
- The MAMA AI, 100 00 Prague, Czech Republic
| | - Ilja Bezrukov
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- KWS Saat, 37574 Einbeck, Germany
| | - Filip Kolár
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Sferra G, Fantozzi D, Scippa GS, Trupiano D. Key Pathways and Genes of Arabidopsis thaliana and Arabidopsis halleri Roots under Cadmium Stress Responses: Differences and Similarities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091793. [PMID: 37176850 PMCID: PMC10180823 DOI: 10.3390/plants12091793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) is among the world's major health concerns, as it renders soils unsuitable and unsafe for food and feed production. Phytoremediation has the potential to remediate Cd-polluted soils, but efforts are still needed to develop a deep understanding of the processes underlying it. In this study, we performed a comprehensive analysis of the root response to Cd stress in A. thaliana, which can phytostabilize Cd, and in A. halleri, which is a Cd hyperaccumulator. Suitable RNA-seq data were analyzed by WGCNA to identify modules of co-expressed genes specifically associated with Cd presence. The results evidenced that the genes of the hyperaccumulator A. halleri mostly associated with the Cd presence are finely regulated (up- and downregulated) and related to a general response to chemical and other stimuli. Additionally, in the case of A. thaliana, which can phytostabilize metals, the genes upregulated during Cd stress are related to a general response to chemical and other stimuli, while downregulated genes are associated with functions which, affecting root growth and development, determine a deep modification of the organ both at the cellular and physiological levels. Furthermore, key genes of the Cd-associated modules were identified and confirmed by differentially expressed gene (DEG) detection and external knowledge. Together, key functions and genes shed light on differences and similarities among the strategies that the plants use to cope with Cd and may be considered as possible targets for future research.
Collapse
Affiliation(s)
- Gabriella Sferra
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Daniele Fantozzi
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | | | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|