1
|
An Y, Wang Q, Cui Y, Liu X, Wang P, Zhou Y, Kang P, Chen Y, Wang Z, Zhou Q, Wang P. Comparative physiological and transcriptomic analyses reveal genotype specific response to drought stress in Siberian wildrye (Elymus sibiricus). Sci Rep 2024; 14:21060. [PMID: 39256456 PMCID: PMC11387644 DOI: 10.1038/s41598-024-71847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Siberian wildrye (Elymus sibiricus) is a xero-mesophytic forage grass with high nutritional quality and stress tolerance. Among its numerous germplasm resources, some possess superior drought resistance. In this study, we firstly investigated the physiological differences between the leaves of drought-tolerant (DT) and drought-sensitive (DS) genotypes under different field water contents (FWC) in soil culture. The results showed that, under drought stress, DT maintained a lower leaf water potential for water absorption, sustained higher photosynthetic efficiency, and reduced oxidative damage in leaves by efficiently maintaining the ascorbic acid-glutathione (ASA-GSH) cycle to scavenge reactive oxygen species (ROS) compared to DS. Secondly, using RNA sequencing (RNA-seq), we analyzed the gene expression profiles of DT and DS leaves under osmotic stress of hydroponics induced by PEG-6000. Through differential analysis, we identified 1226 candidate unigenes, from which we subsequently screened out 115/212 differentially expressed genes (DEGs) that were more quickly induced/reduced in DT than in DS under osmotic stress. Among them, Unigene0005863 (EsSnRK2), Unigene0053902 (EsLRK10) and Unigene0031985 (EsCIPK5) may be involved in stomatal closure induced by abscisic acid (ABA) signaling pathway. Unigene0047636 (EsCER1) may positively regulates the synthesis of very-long-chain (VLC) alkanes in cuticular wax biosynthesis, influencing plant responses to abiotic stresses. Finally, the contents of wax and cutin were measured by GC-MS under osmotic stress of hydroponics induced by PEG-6000. Corresponding to RNA-seq, contents of wax monomers, especially alkanes and alcohols, showed significant induction by osmotic stress in DT but not in DS. It is suggested that limiting stomatal and cuticle transpiration under drought stress to maintain higher photosynthetic efficiency and water use efficiency (WUE) is one of the critical mechanisms that confer stronger drought resistance to DT. This study provides some insights into the molecular mechanisms underlying drought tolerance in E. sibiricus. The identified genes may provide a foundation for the selection and breeding of drought-tolerant crops.
Collapse
Affiliation(s)
- Yongping An
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Qian Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yannong Cui
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xin Liu
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Yue Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Peng Kang
- College of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Youjun Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Zhiwei Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Pei Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China.
| |
Collapse
|
2
|
Liang Y, Xia J, Jiang Y, Bao Y, Chen H, Wang D, Zhang D, Yu J, Cang J. Genome-Wide Identification and Analysis of bZIP Gene Family and Resistance of TaABI5 ( TabZIP96) under Freezing Stress in Wheat ( Triticum aestivum). Int J Mol Sci 2022; 23:2351. [PMID: 35216467 PMCID: PMC8874521 DOI: 10.3390/ijms23042351] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 01/07/2023] Open
Abstract
The basic leucine zipper (bZIP) regulates plant growth and responds to stress as a key transcription factor of the Abscisic acid (ABA) signaling pathway. In this study, TabZIP genes were identified in wheat and the gene structure, physicochemical properties, cis-acting elements, and gene collinearity were analyzed. RNA-Seq and qRT-PCR analysis showed that ABA and abiotic stress induced most TabZIP genes expression. The ectopic expression of TaABI5 up-regulated the expression of several cold-responsive genes in Arabidopsis. Physiological indexes of seedlings of different lines under freezing stress showed that TaABI5 enhanced the freezing tolerance of plants. Subcellular localization showed that TaABI5 is localized in the nucleus. Furthermore, TaABI5 physically interacted with cold-resistant transcription factor TaICE1 in yeast two-hybrid system. In conclusion, this study identified and analyzed members of the TabZIP gene family in wheat. It proved for the first time that the gene TaABI5 affected the cold tolerance of transgenic plants and was convenient for us to understand the cold resistance molecular mechanism of TaABI5. These results will provide a new inspiration for further study on improving plant abiotic stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (J.X.); (Y.J.); (Y.B.); (H.C.); (D.W.); (D.Z.); (J.Y.)
| |
Collapse
|
3
|
Zhang Y, Li L, Zhang H, Shang J, Li C, Naqvi SMZA, Birech Z, Hu J. Ultrasensitive detection of plant hormone abscisic acid-based surface-enhanced Raman spectroscopy aptamer sensor. Anal Bioanal Chem 2022; 414:2757-2766. [PMID: 35141764 DOI: 10.1007/s00216-022-03923-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/09/2022] [Accepted: 01/24/2022] [Indexed: 12/25/2022]
Abstract
Abscisic acid (ABA), as the most common plant hormone in the growth of wheat, can greatly affect the yield when its levels deviate from normal. Therefore, highly sensitive and selective detection of this hormone is greatly needed. In this work, we developed an aptamer sensor based on surface-enhanced Raman spectroscopy (SERS) and applied it for the high sensitivity detection of ABA. Biotin-modified ABA aptamer complement chains were modified on ferrosoferric oxide magnetic nanoparticles (Fe3O4MNPs) and acted as capture probes, and sulfhydryl aptamer (SH-Apt)-modified silver-coated gold nanospheres (Au@Ag NPs) were used as signal probes. Through the recognition of the ABA aptamer and its complementary chains, an aptamer sensor based on SERS was constructed. As SERS internal standard molecules of 4-mercaptobenzoic acid (4-MBA) were encapsulated between the gold core and silver shell of the signal probes; the constructed aptamer sensor generated a strong SERS signal of 4-MBA after magnetic separation. When there were ABA molecules in the detection system, with the preferential binding of ABA aptamer and ABA molecule, the signal probes were released from the capture probes, after magnetic separation, leading to a linear decrease in SERS intensity of 4-MBA. Thus, the detection response was linear over a logarithmic concentration range, with an ultra-low detection limit of 0.67 fM. In addition, the practical use of this assay method was demonstrated in ABA detection from fresh wheat leaves, with a relative error (RE) of 5.43-8.94% when compared with results from enzyme-linked immunosorbent assay (ELISA). The low RE value proves that the aptamer sensor will be a promising method for ABA detection.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Linze Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Hao Zhang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Junjian Shang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Can Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Syed Muhammad Zaigham Abbas Naqvi
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Zephania Birech
- Department of Physics, University of Nairobi, Nairobi, 30197, Kenya
| | - Jiandong Hu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China.
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 45002, China.
| |
Collapse
|