1
|
Amiripour H, Iranbakhsh A, Saadatmand S, Mousavi F, Oraghi Ardebili Z. Exogenous application of melatonin and chitosan mitigate simulated microgravity stress in the Rocket (Eruca sativa L.) plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109294. [PMID: 39577161 DOI: 10.1016/j.plaphy.2024.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/12/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Starting life in space and implementing spaceflight missions requires raising of plants in special conditions, where various stresses, including microgravity, are applied to plant. The use of stimulants is known as a promising effective approach that enhances plant resistance encountered a variety of abiotic stresses. In this study, the impact of two stimulants, melatonin and chitosan, in reducing negative effects of clinorotation on Rocket (Eruca sativa L.) seedlings was investigated from a physiological and biochemical point of view. For this purpose, a completely randomized experiment was designed where the treatments included control (without stimulants and normal gravity), melatonin (100 μM), chitosan (230 M), microgravity, microgravity + melatonin, and microgravity + chitosan. The results disclosed that the microgravity significantly impaired the plant growth and morphology, while exogenous application of melatonin and chitosan improved the plant growth parameters under stress conditions. Under microgravity, there was a reduction of 46.15% in shoot length (4.9 mm) and 41.44% in root length (4.7 mm) compared with the control (9.1 mm; 8.03 mm), respectively. Clinorotation led to a marked increment in the enzymes activity, wherein the POD, SOD and CAT activities increased by 75.13%, 72.67%, and 53.42%, respectively, compared with the control seedlings. In addition, supply of these two stimulants strengthened the scavenging of radial oxygen species and helped the plant to tolerate stress conditions, by activated the enzymatic and non-enzymatic systems. These results can pave the road for more studies and broad application of biological stimuli to overcome the space harsh environmental conditions by plants.
Collapse
Affiliation(s)
- Hilda Amiripour
- Department of Biology, Science and Research Branch, Islamic Azad University, 1477893855, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, 1477893855, Tehran, Iran.
| | - Sara Saadatmand
- Department of Biology, Science and Research Branch, Islamic Azad University, 1477893855, Tehran, Iran
| | - Fateme Mousavi
- Air and Space Physiology Research Group, Aerospace Research Institute (ARI), Ministry of Science, Research and Technology (MSRT), Tehran, Iran
| | | |
Collapse
|
2
|
Wang X, Xu J, Chen W, Shi Y, Liu F, Jiang H. A new strategy integrating peroxymonosulfate oxidation and soil amendments in contaminated soil: Bensulfuron methyl degradation, soil quality improvement and maize growth promotion. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135852. [PMID: 39298944 DOI: 10.1016/j.jhazmat.2024.135852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Bensulfuron methyl (BSM) residues have caused serious yield reductions of sensitive crops. Chemical oxidation is an effective remediation technology, while it affects soil quality and subsequent agricultural activity, necessitating approriate improvement measures. So Fe2O3-Mn3O4 with excellent bimetallic synergistic effect was synthesized to activate peroxymonosulfate (PMS) for BSM degradation. The catalytic activity and influencing factors were systematically predetermined in water in view of soil remediation. Results showed Fe2O3-Mn3O4/PMS oxidized 99.3 % BSM within 60 min with the help of multi-reactive species and electron transfer. Meanwhile, Fe2O3-Mn3O4/PMS treatment exhibited technical feasibility in soil that 97.6 % BSM was degraded in 5 days under the low usages of Fe2O3-Mn3O4 (0.8 %) and PMS (0.15 %). Although Fe2O3-Mn3O4/PMS decreased BSM phytotoxicity and improved maize growth, a few gaps existed between the remediated group and uncontaminated group, including biomass, length, available potassium, organic matters, pH, redox potential (Eh) and sulfate content. The introductions of biochar and chitosan in remediated soils promoted growth, increased organic matters content, improved soil resistance to acidification and decreased Eh, alleviating the negative effects of Fe2O3-Mn3O4/PMS. Overall, the study provided new insights into the combination of Fe2O3-Mn3O4/PMS and biochar and chitosan in BSM-contaminated soil, achieving BSM degradation and improvements of soil quality and plant growth.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nanjing 210095, China
| | - Jiangyan Xu
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nanjing 210095, China
| | - Wei Chen
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nanjing 210095, China
| | - Ying Shi
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nanjing 210095, China
| | - Fang Liu
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nanjing 210095, China
| | - Hongmei Jiang
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nanjing 210095, China.
| |
Collapse
|
3
|
Rojas-Pirela M, Carillo P, Lárez-Velásquez C, Romanazzi G. Effects of chitosan on plant growth under stress conditions: similarities with plant growth promoting bacteria. FRONTIERS IN PLANT SCIENCE 2024; 15:1423949. [PMID: 39582624 PMCID: PMC11581901 DOI: 10.3389/fpls.2024.1423949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024]
Abstract
The agricultural use of synthetic pesticides, fertilizers, and growth regulators may represent a serious public health and environmental problem worldwide. All this has prompted the exploration of alternative chemical compounds, leading to exploring the potential of chitosan and PGPB in agricultural systems as a potential biotechnological solution to establish novel agricultural production practices that not only result in fewer adverse impacts on health and the environment but also improve the resilience and growth of the plants. In this work, an analysis of the impact of plant growth-promoting bacteria (PGPB) and chitosan on plant growth and protection has been conducted, emphasizing the crucial bioactivities of the resistance of the plants to both biotic and abiotic stressors. These include inducing phytohormone production, mobilization of insoluble soil nutrients, biological nitrogen fixation, ethylene level regulation, controlling soil phytopathogens, etc. Moreover, some relevant aspects of chitin and chitosan are discussed, including their chemical structures, sources, and how their physical properties are related to beneficial effects on agricultural applications and mechanisms of action. The effects of PGPB and chitosan on photosynthesis, germination, root development, and protection against plant diseases have been compared, emphasizing the intriguing similarities and synergistic effects observed in some of these aspects. Although currently there are limited studies focused on the combined application of PGPB and chitosan, it would be important to consider the similarities highlighted in this work, and those that may emerge in future studies or through well-designed investigations, because these could permit advancing towards a greater knowledge of these systems and to obtain better formulations by combining these bioproducts, especially for use in the new contexts of sustainable agriculture. Thus, it seems feasible to augur a promising near future for these combinations, considering the wide range of possibilities offered by chitinous biomaterials for the development of innovative formulations, as well as allowing different application methods. Likewise, the studies related to the PGPB effects on plant growth appear to be expanding due to ongoing research to test on plants the impacts of microorganisms derived from different environments, whether known or recently discovered, making it a very exciting field of research.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania, Caserta, Italy
| | | | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
4
|
Nkoh JN, Guan P, Li JY, Xu RK. Effect of carbon and nitrogen mineralization of chitosan and its composites with hematite/gibbsite on soil acidification of an Ultisol induced by urea. CHEMOSPHERE 2024; 349:140896. [PMID: 38070606 DOI: 10.1016/j.chemosphere.2023.140896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/26/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Chitosan is a biodegradable polymer with a vast range of applications. Along with its metal composites, chitosan has been applied in the remediation of polluted soils as well as a biofertilizer. However, little attention has been given to the degradation of chitosan composites in soil and how they affect soil respiration rate and other physicochemical parameters. In this study, the degradation of chitosan and its composites with gibbsite and hematite in an acidic Ultisol and the effect on urea (200 mg N kg-1) transformation were investigated in a 70-d incubation experiment. The results showed that the change trends of soil pH, N forms, and CO2 emissions were similar for chitosan and its composites when applied at rates <5 g C kg-1. At a rate of 5 g C kg-1, the C and N mineralization trends suggested that the chitosan-gibbsite composite was more stable in soil and this stability was owed to the formation of a new chemical bond (CH-N-Al-Gibb) as observed in the Fourier-transform infrared spectrum at 1644 cm-1. The mineralization of the added materials significantly increased soil pH and decreased soil exchangeable acidity (P < 0.01). This played an important role in decreasing the amount of H+ produced during urea transformation in the soil. The soil's initial pH was an important factor influencing C and N mineralization trends. For instance, increasing the initial soil pH significantly increased the nitrification rate and chitosan decomposition trend (P < 0.01) and thus, the contribution of chitosan and its composites to increase soil pH and inhibit soil acidification during urea transformation was significantly decreased (P < 0.01). These findings suggest that to achieve long-term effects of chitosan in soils, applying it as a chitosan-gibbsite complex is a better option.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon; Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peng Guan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiu-Yu Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Rossini A, Ruggeri R, Mzid N, Rossini F, Di Miceli G. Codium fragile (Suringar) Hariot as Biostimulant Agent to Alleviate Salt Stress in Durum Wheat: Preliminary Results from Germination Trials. PLANTS (BASEL, SWITZERLAND) 2024; 13:283. [PMID: 38256836 PMCID: PMC10818485 DOI: 10.3390/plants13020283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Soil salinization is a critical environmental problem in arid and semiarid regions of the world. The aim of the present study was to evaluate the effect of an algae-based biostimulant on germination and seedling vigour of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.), under different saline conditions (0, 100, and 200 mM NaCl). The experiment was carried out under controlled-environment conditions. Seeds were sprayed with a solution containing a combination of fungicide and different concentrations of Codium fragile (Suringar) Hariot algae (0%w/v, 10%w/v, 20%w/v, and 30%w/v). All experimental units were placed in a germination cabinet. The effect of the seaweed extract (SWE) on seed germination and seedling performance under salinity stress was evaluated over a period of 8 days. Coleoptile length and biomass were found to be significantly and positively affected by the application of different SWE doses as compared to the control treatment (0% algae). As for germination traits, seeds treated with SWE showed a final germination (from 82% to 88%), under severe saline conditions, significantly higher than that observed in the control treatment (61%). Our findings indicate that the appropriate dose of biostimulant can markedly improve the germination and the seedlings vigour of durum wheat seeds under saline conditions. Additional studies will be needed to understand the mechanism of action of this biostimulant and its effectiveness in longer studies under field conditions.
Collapse
Affiliation(s)
- Angelo Rossini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; (A.R.); (R.R.); (N.M.)
| | - Roberto Ruggeri
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; (A.R.); (R.R.); (N.M.)
| | - Nada Mzid
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; (A.R.); (R.R.); (N.M.)
| | - Francesco Rossini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; (A.R.); (R.R.); (N.M.)
| | - Giuseppe Di Miceli
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy;
| |
Collapse
|
6
|
Kruthika N, Jithesh MN. Morpho-physiological profiling of rice (Oryza sativa) genotypes at germination stage with contrasting tolerance to salinity stress. JOURNAL OF PLANT RESEARCH 2023; 136:907-930. [PMID: 37702838 DOI: 10.1007/s10265-023-01491-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Salinity is among the harshest environmental stress conditions that negatively affects productivity of salt-sensitive rice. Since, germination is the most crucial phase in the life-cycle of plants, the present study was carried out to study the morpho-physiological traits associated with salinity stress. Evaluation of tolerance in four contrasting rice genotypes was assessed on the basis of specific morpho-physiological parameters including radicle emergence, seedling vigour index, germination index, mean germination time, radicle and plumule growth and seedling water uptake. Largely, our findings revealed that mean germination time (MGT) and seedling vigour index (SVI) are fast-screening procedures to test seedling performance in salt stress conditions. Salt sensitive genotypes showed higher MGT and lower SVI, confirming that these indices are good indicators of poor germination response. Salt-tolerant genotypes were shown to be inhibited to a lesser extent in alpha-amylase activity in spite of high concentrations of imposed NaCl stress, that correlated with better regulation of water-uptake and increased accumulation of total soluble sugar content. Exogenous supplementation of soluble sugars improved the germination rate in a salt sensitive genotype, Jyothi, confirming the importance of soluble sugars in signaling under NaCl stress conditions. Increased total phenols and flavonoids were observed to be relative to higher Total Antioxidant Capacity in salt tolerant genotypes underlying the significance of seed phenolic compounds in early germination response in NaCl stress conditions. Kagga, a landrace grown in coastal Karnataka performed comparably with that of salt tolerant rice, Pokkali. In conclusion, the determination of early seedling response may be utilized as a useful strategy to uncover genetic variation in rice germplasm to salinity stress.
Collapse
Affiliation(s)
- N Kruthika
- Department of Biotechnology, School of Sciences, Jain (Deemed-to-Be University), # 34, 1St Cross, JC Road, Bengaluru, 560 027, India
| | - M N Jithesh
- Department of Biotechnology, School of Sciences, Jain (Deemed-to-Be University), # 34, 1St Cross, JC Road, Bengaluru, 560 027, India.
| |
Collapse
|
7
|
Beleggia R, Iannucci A, Menga V, Quitadamo F, Suriano S, Citti C, Pecchioni N, Trono D. Impact of Chitosan-Based Foliar Application on the Phytochemical Content and the Antioxidant Activity in Hemp ( Cannabis sativa L.) Inflorescences. PLANTS (BASEL, SWITZERLAND) 2023; 12:3692. [PMID: 37960049 PMCID: PMC10648115 DOI: 10.3390/plants12213692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
In the present study, the phytochemical content and the antioxidant activity in the inflorescences of the monoecious hemp cultivar Codimono grown in southern Italy were assessed, and their elicitation was induced by foliar spray application of 50 mg/L and 250 mg/L of chitosan (CHT) at three different molecular weights (low, CHT L; medium, CHT M; high CHT H). The analysis of the phytochemical profile confirmed that cannabinoids were the most abundant class (54.2%), followed by flavonoids (40.3%), tocopherols (2.2%), phenolic acids (1.9%), and carotenoids (1.4%). Cannabinoids were represented almost exclusively by cannabidiol, whereas cannabigerol and Δ9-tetrahydrocannabinol were detected at very low levels (the latter was below the legal limit of 0.3%). The most abundant flavonoids were orientin and vitexin, whereas tocopherols were mainly represented by α-tocopherol. The antioxidant activity was found to be positively correlated with flavonoids and tocopherols. Statistical analysis revealed that the CHT treatments significantly affected the phytochemical content and the antioxidant activity of hemp inflorescences. Notably, a significant increase in the total phenolic content (from +36% to +69%), the α-tocopherol (from +45% to +75%) and β+γ-tocopherol (from +35% to +82%) contents, and the ABTS radical scavenging activity (from +12% to +28%) was induced by all the CHT treatments. In addition, treatments with CHT 50 solutions induced an increase in the total flavonoid content (from +12% to +27%), as well as in the vitexin (from +17% to +20%) and orientin (from +20% to +30%) contents. Treatment with CHT 50 L almost always resulted in the greatest increases. Overall, our findings indicated that CHT could be used as a low-cost and environmentally safe elicitor to improve the health benefits and the economic value of hemp inflorescences, thus promoting their employment in the food, pharmaceutical, nutraceutical, and cosmetic supply chains.
Collapse
Affiliation(s)
- Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Anna Iannucci
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Valeria Menga
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Filippo Quitadamo
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Serafino Suriano
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Cinzia Citti
- Department of Life Science, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
- CNR NANOTEC-Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Daniela Trono
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| |
Collapse
|
8
|
Román-Doval R, Torres-Arellanes SP, Tenorio-Barajas AY, Gómez-Sánchez A, Valencia-Lazcano AA. Chitosan: Properties and Its Application in Agriculture in Context of Molecular Weight. Polymers (Basel) 2023; 15:2867. [PMID: 37447512 DOI: 10.3390/polym15132867] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Chitosan is a naturally occurring compound that can be obtained from deacetylated chitin, which is obtained from various sources such as fungi, crustaceans, and insects. Commercially, chitosan is produced from crustaceans. Based on the range of its molecular weight, chitosan can be classified into three different types, namely, high molecular weight chitosan (HMWC, >700 kDa), medium molecular weight chitosan (MMWC, 150-700 kDa), and low molecular weight chitosan (LMWC, less than 150 kDa). Chitosan shows several properties that can be applied in horticultural crops, such as plant root growth enhancer, antimicrobial, antifungal, and antiviral activities. Nevertheless, these properties depend on its molecular weight (MW) and acetylation degree (DD). Therefore, this article seeks to extensively review the properties of chitosan applied in the agricultural sector, classifying them in relation to chitosan's MW, and its use as a material for sustainable agriculture.
Collapse
Affiliation(s)
- Ramón Román-Doval
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Oaxaca 68230, Mexico
| | | | - Aldo Y Tenorio-Barajas
- Faculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla, Puebla 72570, Mexico
| | - Alejandro Gómez-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Oaxaca 68230, Mexico
| | | |
Collapse
|
9
|
Beleggia R, Menga V, Fulvio F, Fares C, Trono D. Effect of Genotype, Year, and Their Interaction on the Accumulation of Bioactive Compounds and the Antioxidant Activity in Industrial Hemp ( Cannabis sativa L.) Inflorescences. Int J Mol Sci 2023; 24:ijms24108969. [PMID: 37240314 DOI: 10.3390/ijms24108969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The phytochemical content and the antioxidant activity in the inflorescences of six industrial hemp (Cannabis sativa L.) genotypes, four monoecious (Codimono, Carmaleonte, Futura 75, and Santhica 27), and two dioecious (Fibrante and Carmagnola Selezionata), were assessed for three consecutive years from 2018 to 2020. The total phenolic content, total flavonoid content, and antioxidant activity were determined by spectrophotometric measurements, whereas HPLC and GC/MS were used to identify and quantify the phenolic compounds, terpenes, cannabinoids, tocopherols, and phytosterols. All the measured traits were significantly affected by genotype (G), cropping year (Y), and their interaction (G × Y), although the Y effect prevailed as a source of variation, ranging from 50.1% to 88.5% for all the metabolites except cannabinoids, which were equally affected by G, Y, and G × Y interaction (33.9%, 36.5%, and 21.4%, respectively). The dioecious genotypes presented a more constant performance over the three years compared to the monoecious genotypes, with the highest and most stable phytochemical content observed in the inflorescences of Fibrante, which was characterized by the highest levels of cannabidiol, α-humulene and β-caryophyllene, which may confer on the inflorescences of this genotype a great economic value due to the important pharmacological properties of these metabolites. Conversely, the inflorescences of Santhica 27 were characterized by the lowest accumulation of phytochemicals over the cropping years, with the notable exception of cannabigerol, a cannabinoid that exhibits a wide range of biological activities, which was found at its highest level in this genotype. Overall, these findings can be used by breeders in future programs aimed at the selection of new hemp genotypes with improved levels of phytochemicals in their inflorescences, which can provide better health and industrial benefits.
Collapse
Affiliation(s)
- Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Valeria Menga
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Flavia Fulvio
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, Via di Corticella, 133, 40128 Bologna, Italy
| | - Clara Fares
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Daniela Trono
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| |
Collapse
|
10
|
Ji H, Wang J, Chen F, Fan N, Wang X, Xiao Z, Wang Z. Meta-analysis of chitosan-mediated effects on plant defense against oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158212. [PMID: 36028025 DOI: 10.1016/j.scitotenv.2022.158212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Chitosan, as a natural non-toxic biomaterial, has been demonstrated to enhance plant defense against oxidative stress. However, the general pattern and mechanism of how chitosan application modifies the amelioration of oxidative stress in plants have not been elucidated yet. Herein, we performed a meta-analysis of 58 published articles up to January 2022 to fill this knowledge gap, and found that chitosan application significantly increased the antioxidant enzyme activity (by 40.6 %), antioxidant metabolites content (by 24.6 %), defense enzyme activity (by 77.9 %), defense-related genes expression (by 103.2 %), phytohormones (by 26.9 %), and osmotic regulators (by 23.2 %) under stress conditions, which in turn notably reduced oxidative stress (by 32.2 %), and increased plant biomass (by 28.1 %) and yield (by 15.7 %). Moreover, chitosan-mediated effects on the amelioration of oxidative stress depended on the properties and application methods of chitosan. Our findings provide a comprehensive understanding of the mechanism of chitosan-alleviated oxidative stress, which would promote the application of chitosan in plant protection in agriculture.
Collapse
Affiliation(s)
- Haihua Ji
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Jinghong Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Ningke Fan
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Xie Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Chitosan augments bioactive properties and drought resilience in drought-induced red kidney beans. Food Res Int 2022; 159:111597. [DOI: 10.1016/j.foodres.2022.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022]
|
12
|
Chitosan and chitosan-derived nanoparticles modulate enhanced immune response in tomato against bacterial wilt disease. Int J Biol Macromol 2022; 220:223-237. [PMID: 35970370 DOI: 10.1016/j.ijbiomac.2022.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022]
Abstract
The present study evaluated the priming efficacy of chitosan and chitosan-derived nanoparticles (CNPs) against bacterial wilt of tomato. In the current study, seed-treated CNPs plus pathogen-inoculated tomato seedlings recorded significant protection of 62 % against pathogen-induced wilt disease and subsequently better growth. The induced resistance was witnessed by a prominent increase in lignin, callose and H2O2 deposition, followed by superoxide radical accumulation in leaves. Additionally, chitosan and CNPs-treated tomato plants recorded a remarkable increase in the upregulation of phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), catalase (CAT) and β-1, 3 glucanase (GLU) in comparison with untreated plants. The chitosan and CNPs-induced antioxidant enzymes were positively correlated with the stimulation of corresponding gene expression in CNPs treated plants related to pathogen-inoculated ones. The results of this study describe that how the application of chitosan and CNPs elicit defense responses at the cellular, biochemical and gene expression in tomato plants against bacterial wilt disease, thereby improve growth and yield.
Collapse
|
13
|
Anthocyanin profile and main antioxidants in pigmented wheat grains and related millstream fractions. Cereal Chem 2022. [DOI: 10.1002/cche.10591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Synthesis of γ-Aminobutyric Acid-Modified Chitooligosaccharide Derivative and Enhancing Salt Resistance of Wheat Seedlings. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103068. [PMID: 35630540 PMCID: PMC9143915 DOI: 10.3390/molecules27103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Salinity is one of the major abiotic stresses limiting crop growth and productivity worldwide. Salt stress during germination degenerates crop establishment and declines yield in wheat, therefore alleviating the damage of salt stress to wheat seedlings is crucial. Chitooligosaccharide (COS) was grafted with γ-aminobutyric acid based on the idea of bioactive molecular splicing, and the differences in salt resistance before and after grafting were compared. The expected derivative was successfully synthesized and exhibited better salt resistance-inducing activity than the raw materials. By activating antioxidant enzymes such as superoxide dismutases (SOD), catalase (CAT) and phenylalanine ammonia-lyase (PAL) and subsequently eliminating reactive oxygen species (ROS) in a timely manner, the rate of O−2 production and H2O2 content of wheat seedlings were reduced, and the dynamic balance of free radical metabolism in the plant body was maintained. A significantly reduced MDA content, reduced relative permeability of the cell membrane, and decreased degree of damage to the cell membrane were observed. A significant increase in the content of soluble sugar, maintenance of osmotic regulation and the stability of the cell membrane structure, effective reduction in the salt stress-induced damage to wheat, and the induction of wheat seedling growth were also observed, thereby improving the salt tolerance of wheat seedlings.
Collapse
|
15
|
Balusamy SR, Rahimi S, Sukweenadhi J, Sunderraj S, Shanmugam R, Thangavelu L, Mijakovic I, Perumalsamy H. Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydr Polym 2022; 284:119189. [DOI: 10.1016/j.carbpol.2022.119189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
|
16
|
Protective, Biostimulating, and Eliciting Effects of Chitosan and Its Derivatives on Crop Plants. Molecules 2022; 27:molecules27092801. [PMID: 35566152 PMCID: PMC9101998 DOI: 10.3390/molecules27092801] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chitosan is a biodegradable and biocompatible polysaccharide obtained by partial deacetylation of chitin. This polymer has been gaining increasing popularity due to its natural origin, favorable physicochemical properties, and multidirectional bioactivity. In agriculture, the greatest hopes are raised by the possibility of using chitosan as a biostimulant, a plant protection product, an elicitor, or an agent to increase the storage stability of plant raw materials. The most important properties of chitosan include induction of plant defense mechanisms and regulation of metabolic processes. Additionally, it has antifungal, antibacterial, antiviral, and antioxidant activity. The effectiveness of chitosan interactions is determined by its origin, deacetylation degree and acetylation pattern, molecular weight, type of chemical modifications, pH, concentration, and solubility. There is a need to conduct research on alternative sources of chitosan, extraction methods, optimization of physicochemical properties, and commercial implementation of scientific progress outcomes in this field. Moreover, studies are necessary to assess the bioactivity and toxicity of chitosan nanoparticles and chitosan conjugates with other substances and to evaluate the consequences of the large-scale use thereof. This review presents the unique properties of chitosan and its derivatives that have the greatest importance for plant production and yield quality as well as the benefits and limitations of their application.
Collapse
|
17
|
Pretreatment with Chitosan Prevents Fusarium Infection and Induces the Expression of Chitinases and β-1,3-Glucanases in Garlic (Allium sativum L.). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fusarium infection decreases the yield of garlic (Allium sativum L.); however, the knowledge about garlic response to fungal attack is limited. Chitosan induces plant defense response to stress conditions. Here, we analyzed the effects of chitosan with low (Ch1, 39 kDa) and medium (Ch2, 135 kDa) molecular weight on Fusarium infection in garlic. Ch1 and Ch2 at concentrations 0.125–0.400 mg/mL suppressed the growth of Fusarium proliferatum cultures in vitro. Pretreatment of garlic bulbs with Ch1 or Ch2 prevented disease symptoms after F. proliferatum inoculation, while exerting early inhibitory and late stimulatory effects on chitinase and β-1,3-glucanase activities. Ch1/Ch2 treatment of garlic already infected with F. proliferatum caused transcriptional upregulation of chitinases and β-1,3-glucanases at the early stage, which was maintained at the late stage in Ch2-treated samples, but not in Ch1-treated samples, where transcriptional inhibition was observed. The stimulatory effect of Ch2 pretreatment on the expression of chitinase and endo-β-1,3-glucanase genes was stronger than that of Ch1 pretreatment, suggesting that Ch2 could be more effective than Ch1 in pre-sowing treatment of garlic bulbs. Our results provide insights into the effects of chitosan on the garlic response to Fusarium, suggesting a novel strategy to protect garlic crop against fungal infection.
Collapse
|
18
|
Laus MN, De Santis MA, Flagella Z, Soccio M. Changes in Antioxidant Defence System in Durum Wheat under Hyperosmotic Stress: A Concise Overview. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010098. [PMID: 35009101 PMCID: PMC8747421 DOI: 10.3390/plants11010098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 05/09/2023]
Abstract
Durum wheat is one of the most commonly cultivated species in the world and represents a key commodity for many areas worldwide, as its grain is used for production of many foods, such as pasta, bread, couscous, and bourghul. Durum wheat grain has a relevant role in the human diet, providing carbohydrates, proteins, lipids, fibres, vitamins, and minerals, as well as highly valued bioactive compounds contributing to a healthy diet. Durum wheat is largely cultivated in the Mediterranean basin, where it is mainly grown under rain-fed conditions, thus currently undergoing drought stress, as well as soil salinity, which can hamper yield potential and influence the qualitative characteristics of grain. When plants suffer drought and/or salinity stress, a condition known as hyperosmotic stress is established at cellular level. This leads to the accumulation of ROS thus generating in turn an oxidative stress condition, which can ultimately result in the impairment of cellular integrity and functionality. To counteract oxidative damage due to excessive ROS production under stress, plants have evolved a complex array of both enzymatic and non-enzymatic antioxidant mechanisms, working jointly and synergically for maintenance of ROS homeostasis. Enhancement of antioxidant defence system has been demonstrated as an adaptive mechanism associated to an increased tolerance to hyperosmotic stress. In the light of these considerations, this review provides a concise overview on recent advancements regarding the role of the ascorbate-glutathione cycle and the main antioxidant enzymes (superoxide dismutase, catalase, and peroxidases) in durum wheat response to drought and salt stresses that are expected to become more and more frequent due to the ongoing climate changes.
Collapse
|
19
|
Hasanuzzaman M, Raihan MRH, Khojah E, Samra BN, Fujita M, Nahar K. Biochar and Chitosan Regulate Antioxidant Defense and Methylglyoxal Detoxification Systems and Enhance Salt Tolerance in Jute ( Corchorus olitorius L.). Antioxidants (Basel) 2021; 10:antiox10122017. [PMID: 34943120 PMCID: PMC8699025 DOI: 10.3390/antiox10122017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
We investigated the role of biochar and chitosan in mitigating salt stress in jute (Corchorus olitorius L. cv. O-9897) by exposing twenty-day-old seedlings to three doses of salt (50, 100, and 150 mM NaCl). Biochar was pre-mixed with the soil at 2.0 g kg−1 soil, and chitosan-100 was applied through irrigation at 100 mg L−1. Exposure to salt stress notably increased lipid peroxidation, hydrogen peroxide content, superoxide radical levels, electrolyte leakage, lipoxygenase activity, and methylglyoxal content, indicating oxidative damage in the jute plants. Consequently, the salt-stressed plants showed reduced growth, biomass accumulation, and disrupted water balance. A profound increase in proline content was observed in response to salt stress. Biochar and chitosan supplementation significantly mitigated the deleterious effects of salt stress in jute by stimulating both non-enzymatic (e.g., ascorbate and glutathione) and enzymatic (e.g., ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase superoxide dismutase, catalase, peroxidase, glutathione S-transferase, glutathione peroxidase) antioxidant systems and enhancing glyoxalase enzyme activities (glyoxalase I and glyoxalase II) to ameliorate reactive oxygen species damage and methylglyoxal toxicity, respectively. Biochar and chitosan supplementation increased oxidative stress tolerance and improved the growth and physiology of salt-affected jute plants, while also significantly reducing Na+ accumulation and ionic toxicity and decreasing the Na+/K+ ratio. These findings support a protective role of biochar and chitosan against salt-induced damage in jute plants.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
- Correspondence: (M.H.); (K.N.)
| | | | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Bassem N. Samra
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan;
| | - Kamrun Nahar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Correspondence: (M.H.); (K.N.)
| |
Collapse
|