1
|
Li J, Wang B, Zhang L, Ma Y, Song L, Cao B. Genome-wide study of drought tolerance traits in wild jujube. BMC PLANT BIOLOGY 2024; 24:1000. [PMID: 39448934 PMCID: PMC11520188 DOI: 10.1186/s12870-024-05680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Wild jujube trees in Ningxia, China, demonstrate exceptional drought tolerance. The identification of quantitative trait loci (QTLs) associated with drought resistance and linked genes could significantly enhance molecular breeding efforts for this species. This study involved the measurement of nine drought resistance indicators were measured in 150 wild jujube trees from five regions in Ningxia. Genome-wide association studies (GWAS) were carried out using a range of mixed linear models to pinpoint SNP markers linked to drought resistance. RESULTS The coefficients of variation for the nine leaf traits in wild jujube trees ranged from 14.76 to 62.17%, with broad-sense heritability estimates falling between 0.84 and 0.99. Through GWAS analysis, a total of 12 significant SNPs and 162 potential genes associated with drought resistance were detected. This SNPs explained phenotypic variance ranging from 20.74 to 50.37%. Gene Ontology (GO) functional annotation highlighted five crucial candidate genes‒ZjMYB44, ZjUCLOC, ZjDnaJ50, ZjUCHL22 and ZjHSFB‒linked to drought tolerance in wild jujube. These genes demonstrated a positive correlation with drought tolerance within the wild jujube population. CONCLUSIONS Our findings indicate that these five genes likely play a pivotal role in conferring drought tolerance in wild jujubes. This study offers new insights to support the development of drought-resistant jujube varieties, thereby contributing to sustainable agricultural practices and bolstering food security in arid regions.
Collapse
Affiliation(s)
- Jingzu Li
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China
| | - Botao Wang
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China
| | - Lei Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China
| | - Yaping Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
| | - Lihua Song
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China.
| | - Bing Cao
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
2
|
Rogo U, Fambrini M, Pugliesi C. Embryo Rescue in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3106. [PMID: 37687352 PMCID: PMC10489947 DOI: 10.3390/plants12173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (U.R.); (M.F.)
| |
Collapse
|
3
|
Liu Y, Shen K, Yin C, Xu X, Yu X, Ye B, Sun Z, Dong J, Bi A, Zhao X, Xu D, He Z, Zhang X, Hao C, Wu J, Wang Z, Wu H, Liu D, Zhang L, Shen L, Hao Y, Lu F, Guo Z. Genetic basis of geographical differentiation and breeding selection for wheat plant architecture traits. Genome Biol 2023; 24:114. [PMID: 37173729 PMCID: PMC10176713 DOI: 10.1186/s13059-023-02932-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Plant architecture associated with increased grain yield and adaptation to the local environments is selected during wheat (Triticum aestivum) breeding. The internode length of individual stems and tiller length of individual plants are important for the determination of plant architecture. However, few studies have explored the genetic basis of these traits. RESULTS Here, we conduct a genome-wide association study (GWAS) to dissect the genetic basis of geographical differentiation of these traits in 306 worldwide wheat accessions including both landraces and traditional varieties. We determine the changes of haplotypes for the associated genomic regions in frequency in 831 wheat accessions that are either introduced from other countries or developed in China from last two decades. We identify 83 loci that are associated with one trait, while the remaining 247 loci are pleiotropic. We also find 163 associated loci are under strong selective sweep. GWAS results demonstrate independent regulation of internode length of individual stems and consistent regulation of tiller length of individual plants. This makes it possible to obtain ideal haplotype combinations of the length of four internodes. We also find that the geographical distribution of the haplotypes explains the observed differences in internode length among the worldwide wheat accessions. CONCLUSION This study provides insights into the genetic basis of plant architecture. It will facilitate gene functional analysis and molecular design of plant architecture for breeding.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Xiaowan Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xuchang Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Botao Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhiwen Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiayu Dong
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Aoyue Bi
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Xuebo Zhao
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Daxing Xu
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Chenyang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - He Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Danni Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lili Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Fei Lu
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
4
|
Zhao DD, Jang YH, Kim EG, Park JR, Jan R, Lubna, Asaf S, Asif S, Farooq M, Chung H, Kang DJ, Kim KM. Identification of a Major Locus for Lodging Resistance to Typhoons Using QTL Analysis in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:449. [PMID: 36771534 PMCID: PMC9919122 DOI: 10.3390/plants12030449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 09/10/2023]
Abstract
We detected a new target quantitative trait locus (QTL) for lodging resistance in rice by analyzing lodging resistance to typhoons (Maysak and Haishen) using a scale from 0 (no prostrating) to 1 (little prostrating or prostrating) to record the resistance score in a Cheongcheong/Nagdong double haploid rice population. Five quantitative trait loci for lodging resistance to typhoons were detected. Among them, qTyM6 and qTyH6 exhibited crucial effects of locus RM3343-RM20318 on chromosome 6, which overlaps with our previous rice lodging studies for the loci qPSLSA6-2, qPSLSB6-5, and qLTI6-2. Within the target locus RM3343-RM20318, 12 related genes belonging to the cytochrome P450 protein family were screened through annotation. Os06g0599200 (OsTyM/Hq6) was selected for further analysis. We observed that the culm and panicle lengths were positively correlated with lodging resistance to typhoons. However, the yield was negatively correlated with lodging resistance to typhoons. The findings of this study improve an understanding of rice breeding, particularly the culm length, early maturing, and heavy panicle varieties, and the mechanisms by which the plant's architecture can resist natural disasters such as typhoons to ensure food safety. These results also provide the insight that lodging resistance in rice may be associated with major traits such as panicle length, culm length, tiller number, and heading date, and thereby improvements in these traits can increase lodging resistance to typhoons. Moreover, rice breeding should focus on maintaining suitable varieties that can withstand the adverse effects of climate change in the future and provide better food security.
Collapse
Affiliation(s)
- Dan-Dan Zhao
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yoon-Hee Jang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Gyeong Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Farooq
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyunjung Chung
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Dong-Jin Kang
- Teaching and Research Center for Bio-Coexistence, Faculty of Agriculture and Life Science, Hirosaki University, Gosyogawara 037-0202, Japan
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Lodging resistance of rice plants studied from the perspective of culm mechanical properties, carbon framework, free volume, and chemical composition. Sci Rep 2022; 12:20026. [PMID: 36414706 PMCID: PMC9681888 DOI: 10.1038/s41598-022-24714-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, four varieties of rice were cultivated on the same farmland under same conditions and for same duration. However, their lodging resistance was found to be obviously different from each other. Herein, three key factors that highly influenced the lodging resistance were identified. First, in terms of morphological trait, in contrast to the generally believed theory that the overall thickness of the fresh culm wall governs the strength, the thickness of the depressed region of the dried basal culm wall largely determined the mechanical properties by acting as the weak link. This depressed region represents the vulnerable part with high syneresis rate. Second, the culm and its carbon framework exhibited sufficient strength and rigidity for both support and stability of the rice stem. The constraint of high lodging resistance of rice plants is attributed to the culm flexibility. Furthermore, the results of the positron annihilation lifetime spectroscopy corroborate that the most amorphous part and the highest-fraction free volume in the culm carbon framework were found for samples that exhibited high lodging resistance. This result confirmed the significant influence of the culm flexibility on lodging resistance. Third, a higher level of nitrogen element content in the basal culm can benefit its growth and development, which may contribute to an increase in lodging resistance of rice plants.
Collapse
|
6
|
QTL Mapping and Candidate Gene Analysis for Seed Germination Response to Low Temperature in Rice. Int J Mol Sci 2022; 23:ijms23137379. [PMID: 35806382 PMCID: PMC9266303 DOI: 10.3390/ijms23137379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/01/2022] Open
Abstract
Low temperature is a serious threat to the seed emergence of rice, which has become one of the main limiting factors affecting rice production in the world. It is of great significance to find the candidate genes controlling low-temperature tolerance during seed germination and study their functions for breeding new rice cultivars with immense low-temperature tolerance during seed germination. In the current experiment, 120 lines of the Cheongcheong Nagdong Double Haploid (CNDH) population were used for quantitative trait locus (QTL) analysis of low-temperature germinability. The results showed a significant difference in germination under low different temperature (LDT) (15 °C, 20 °C) conditions. In total, four QTLs were detected on chromosome 3, 6, and 8. A total of 41 genes were identified from all the four QTLs, among them, 25 genes were selected by gene function annotation and further screened through quantitative real-time polymerase chain reaction (qRT-PCR). Based on gene function annotation and level of expression under low-temperature, our study suggested the OsGPq3 gene as a candidate gene controlling viviparous germination, ABA and GA signaling under low-temperature. This study will provide a theoretical basis for marker-assisted breeding and lay the basis for further mining molecular mechanisms of low-temperature germination tolerance in rice.
Collapse
|
7
|
Zhao DD, Park JR, Jang YH, Kim EG, Du XX, Farooq M, Yun BJ, Kim KM. Identification of One Major QTL and a Novel Gene OsIAA17q5 Associated with Tiller Number in Rice Using QTL Analysis. PLANTS (BASEL, SWITZERLAND) 2022; 11:538. [PMID: 35214873 PMCID: PMC8875189 DOI: 10.3390/plants11040538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Rice tillers are one of the most important traits for the yield and development of rice, although little is known about its mode of inheritance. Tiller numbers were recorded every 7 days a total of nine times, starting 30 days after transplantation. Quantitative trait locus (QTL) based analysis on a set of double haploid population derivatives of a cross between the Cheongcheong and Nagdong varieties identified a major effect of locus RM18130-RM3381 on chromosome 5, which was expressed in eight different growth stages. Within the target region RM18130-RM3381 (physical distance: 2.08 Mb), 61 candidate genes were screened by annotation. Among the candidate genes, Os05g0230700 (named OsIAA17q5), which belongs to the family of auxin-responsive genes, was selected as a target. Auxin promotes cell division and meristem maintenance and is an effective plant regulator which influences plant growth and development by altering the expression of various genes. OsIAA17q5 is expected to control the number of tillers. The present study provides further understanding of the basic genetic mechanisms that selectively express the control of tiller numbers in different growth stages, as well as provides valuable information for future research aimed at cloning the target gene. These results may contribute to developing a comprehensive understanding of the basic genetic processes regulating the developmental behavior of tiller numbers in rice.
Collapse
Affiliation(s)
- Dan-Dan Zhao
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (J.-R.P.); (Y.-H.J.); (E.-G.K.); (M.F.)
| | - Jae-Ryoung Park
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (J.-R.P.); (Y.-H.J.); (E.-G.K.); (M.F.)
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Yoon-Hee Jang
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (J.-R.P.); (Y.-H.J.); (E.-G.K.); (M.F.)
| | - Eun-Gyeong Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (J.-R.P.); (Y.-H.J.); (E.-G.K.); (M.F.)
| | - Xiao-Xuan Du
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea;
- Biosafety Division, National Institute of Agricultural Science, Jeonju 54874, Korea
| | - Muhammad Farooq
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (J.-R.P.); (Y.-H.J.); (E.-G.K.); (M.F.)
| | - Byoung-Ju Yun
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (J.-R.P.); (Y.-H.J.); (E.-G.K.); (M.F.)
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|