1
|
Liu Y, Gao J, Zhao Y, Fu Y, Yan B, Wan X, Cheng G, Zhang W. Effects of different phosphorus and potassium supply on the root architecture, phosphorus and potassium uptake, and utilization efficiency of hydroponic rice. Sci Rep 2024; 14:21178. [PMID: 39261634 PMCID: PMC11390967 DOI: 10.1038/s41598-024-72287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Phosphorus (P) and potassium (K) affect seedling growth, root configuration, and nutrient uptake in hydroponic rice, but there are few studies on all growth stages of rice. The purpose of this experiment was to determine the response characteristics of root morphology, plant physiology, and P and K uptake and utilization efficiency to different supplies of P and K. Two local conventional rice varieties (Shennong 265 and Liaojing 294) were used as experimental materials across four treatments, including HPHK (sufficient P and K supply), HPLK (sufficient P supply under low K levels), LPHK (sufficient K supply under low P levels) and LPLK (low P and K levels) in a hydroponic setting. The results showed that HPHK and HPLK significantly decreased the acid phosphatase activity of leaves and roots from full heading to filling stages when compared to LPHK and LPLK. Sufficient supply of P or K significantly increased the accumulation of P and K (aboveground, leaves, stem sheath, and whole plant) and root morphological parameters (root length, root surface area, total root volume, and tips) during major growth stages when compared to LP or LK levels. HPHK was significantly higher than other treatments in terms of dry weight and the root activity at the main growth stage, P and K uptake rates in nutrient solutions at various stages, related P and K efficiency at the maturity stage, yield, effective panicle number, and grain number per panicle. In addition, the effect of HPHK on the above indexes were significantly greater than those of single sufficient supply of P or K. In conclusion, HPHK can improve plant configuration, increase plant P and K absorption and root activity, and increase rice yield and related P and K utilization efficiency.
Collapse
Affiliation(s)
- Ya Liu
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China
| | - Jiping Gao
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China
| | - Yanze Zhao
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China
| | - Yichen Fu
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China
| | - Bingchun Yan
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China
| | - Xue Wan
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China
| | - Guoqing Cheng
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China
| | - Wenzhong Zhang
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China.
| |
Collapse
|
2
|
Singh VP, Jaiswal S, Wang Y, Feng S, Tripathi DK, Singh S, Gupta R, Xue D, Xu S, Chen ZH. Evolution of reactive oxygen species cellular targets for plant development. TRENDS IN PLANT SCIENCE 2024; 29:865-877. [PMID: 38519324 DOI: 10.1016/j.tplants.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Reactive oxygen species (ROS) are the key players in regulating developmental processes of plants. Plants have evolved a large array of gene families to facilitate the ROS-regulated developmental process in roots and leaves. However, the cellular targets of ROS during plant evolutionary development are still elusive. Here, we found early evolution and large expansions of protein families such as mitogen-activated protein kinases (MAPK) in the evolutionarily important plant lineages. We review the recent advances in interactions among ROS, phytohormones, gasotransmitters, and protein kinases. We propose that these signaling molecules act in concert to maintain cellular ROS homeostasis in developmental processes of root and leaf to ensure the fine-tuning of plant growth for better adaptation to the changing climate.
Collapse
Affiliation(s)
- Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India.
| | - Saumya Jaiswal
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India
| | - Yuanyuan Wang
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Shouli Feng
- Xianghu Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Samiksha Singh
- Department of Botany, S.N. Sen B.V. Post Graduate College, Chhatrapati Shahu Ji Maharaj University, Kanpur 208001, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, South Korea
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310018, China
| | - Shengchun Xu
- Xianghu Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
3
|
Li X, Wang X, Ma X, Cai W, Liu Y, Song W, Fu B, Li S. Genome-wide investigation and expression analysis of OSCA gene family in response to abiotic stress in alfalfa. FRONTIERS IN PLANT SCIENCE 2023; 14:1285488. [PMID: 38023912 PMCID: PMC10655083 DOI: 10.3389/fpls.2023.1285488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Alfalfa is an excellent leguminous forage crop that is widely cultivated worldwide, but its yield and quality are often affected by drought and soil salinization. Hyperosmolality-gated calcium-permeable channel (OSCA) proteins are hyperosmotic calcium ion (Ca2+) receptors that play an essential role in regulating plant growth, development, and abiotic stress responses. However, no systematic analysis of the OSCA gene family has been conducted in alfalfa. In this study, a total of 14 OSCA genes were identified from the alfalfa genome and classified into three groups based on their sequence composition and phylogenetic relationships. Gene structure, conserved motifs and functional domain prediction showed that all MsOSCA genes had the same functional domain DUF221. Cis-acting element analysis showed that MsOSCA genes had many cis-regulatory elements in response to abiotic or biotic stresses and hormones. Tissue expression pattern analysis demonstrated that the MsOSCA genes had tissue-specific expression; for example, MsOSCA12 was only expressed in roots and leaves but not in stem and petiole tissues. Furthermore, RT-qPCR results indicated that the expression of MsOSCA genes was induced by abiotic stress (drought and salt) and hormones (JA, SA, and ABA). In particular, the expression levels of MsOSCA3, MsOSCA5, MsOSCA12 and MsOSCA13 were significantly increased under drought and salt stress, and MsOSCA7, MsOSCA10, MsOSCA12 and MsOSCA13 genes exhibited significant upregulation under plant hormone treatments, indicating that these genes play a positive role in drought, salt and hormone responses. Subcellular localization results showed that the MsOSCA3 protein was localized on the plasma membrane. This study provides a basis for understanding the biological information and further functional analysis of the MsOSCA gene family and provides candidate genes for stress resistance breeding in alfalfa.
Collapse
Affiliation(s)
- Xiaohong Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Xiaotong Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Xuxia Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Wenqi Cai
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Yaling Liu
- Inner Mongolia Pratacultural Technology Innovation Center Co., Ltd, Hohhot, China
| | - Wenxue Song
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, China
| | - Shuxia Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, China
| |
Collapse
|
4
|
Zhou Z, Tang W, Sun Z, Li J, Yang B, Liu Y, Wang B, Xu D, Yang J, Zhang Y. OsCIPK9 Interacts with OsSOS3 and Affects Salt-Related Transport to Improve Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3723. [PMID: 37960079 PMCID: PMC10647249 DOI: 10.3390/plants12213723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Salt is harmful to crop production. Therefore, it is important to understand the mechanism of salt tolerance in rice. CIPK genes have various functions, including regulating salt tolerance and other types of stress and nitrogen use efficiency. In rice, OsCIPK24 is known to regulate salt tolerance, but other OsCIPKs could also function in salt tolerance. In this study, we identified another OsCIPK-OsCIPK9-that can regulate salt tolerance. Knockout of OsCIPK9 in rice could improve salt tolerance. Through expression analyses, OsCIPK9 was found to be mainly expressed in the roots and less expressed in mature leaves. Meanwhile, OsCIPK9 had the highest expression 6 h after salt treatment. In addition, we proved the interaction between OsCIPK9 and OsSOS3. The RNA-seq data showed that OsCIPK9 strongly responded to salt treatment, and the transporters related to salt tolerance may be downstream genes of OsCIPK9. Finally, haplotype analyses revealed that Hap6 and Hap8 mainly exist in indica, potentially providing a higher salt tolerance. Overall, a negative regulator of salt tolerance, OsCIPK9, which interacted with OsSOS3 similarly to OsCIPK24 and influenced salt-related transporters, was identified, and editing OsCIPK9 potentially could be helpful for breeding salt-tolerant rice.
Collapse
Affiliation(s)
- Zhenling Zhou
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China;
| | - Weijie Tang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Jingfang Li
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Bo Yang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Yan Liu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Dayong Xu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China;
| | - Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Li S, Feng T, Zhang C, Zhang F, Li H, Chen Y, Liang L, Zhang C, Zeng W, Liu E, Shi Y, Li M, Meng L. Genetic Dissection of Salt Tolerance and Yield Traits of Geng ( japonica) Rice by Selective Subspecific Introgression. Curr Issues Mol Biol 2023; 45:4796-4813. [PMID: 37367054 DOI: 10.3390/cimb45060305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Salinity is a major factor limiting rice productivity, and developing salt-tolerant (ST) varieties is the most efficient approach. Seventy-eight ST introgression lines (ILs), including nine promising lines with improved ST and yield potential (YP), were developed from four BC2F4 populations from inter-subspecific crosses between an elite Geng (japonica) recipient and four Xian (indica) donors at the Institute of Crop Sciences, Chinese Academy of Agricultural Sciences. Genome-wide characterization of donor introgression identified 35 ST QTLs, 25 of which harbor 38 cloned ST genes as the most likely QTL candidates. Thirty-four are Xian-Geng differentiated ones with the donor (Xian) alleles associated with ST, suggesting differentiated responses to salt stress were one of the major phenotypic differences between the two subspecies. At least eight ST QTLs and many others affecting yield traits were identified under salt/non-stress conditions. Our results indicated that the Xian gene pool contains rich 'hidden' genetic variation for developing superior Geng varieties with improved ST and YP, which could be efficiently exploited by selective introgression. The developed ST ILs and their genetic information on the donor alleles for ST and yield traits would provide a useful platform for developing superior ST and high-yield Geng varieties through breeding by design in the future.
Collapse
Affiliation(s)
- Simin Li
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Ting Feng
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chenyang Zhang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Fanlin Zhang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Hua Li
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yanjun Chen
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Lunping Liang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chaopu Zhang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Wei Zeng
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Erbao Liu
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Lijun Meng
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528200, China
| |
Collapse
|
6
|
Wei W, Lu L, Bian XH, Li QT, Han JQ, Tao JJ, Yin CC, Lai YC, Li W, Bi YD, Man WQ, Chen SY, Zhang JS, Zhang WK. Zinc-finger protein GmZF351 improves both salt and drought stress tolerance in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36866859 DOI: 10.1111/jipb.13474] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.
Collapse
Affiliation(s)
- Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Lu
- Key Lab of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia-Qi Han
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong-Cai Lai
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei Li
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying-Dong Bi
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei-Qun Man
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
7
|
Dai L, Lu X, Shen L, Guo L, Zhang G, Gao Z, Zhu L, Hu J, Dong G, Ren D, Zhang Q, Zeng D, Qian Q, Li Q. Genome-wide association study reveals novel QTLs and candidate genes for seed vigor in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1005203. [PMID: 36388599 PMCID: PMC9645239 DOI: 10.3389/fpls.2022.1005203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Highly seed vigor (SV) is essential for rice direct seeding (DS). Understanding the genetic mechanism of SV-related traits could contribute to increasing the efficiency of DS. However, only a few genes responsible for SV have been determined in rice, and the regulatory network of SV remains obscure. In this study, the seed germination rate (GR), seedling shoot length (SL), and shoot fresh weight (FW) related to SV traits were measured, and a genome-wide association study (GWAS) was conducted to detect high-quality loci responsible for SV using a panel of 346 diverse accessions. A total of 51 significant SNPs were identified and arranged into six quantitative trait locus (QTL) regions, including one (qGR1-1), two (qSL1-1, qSL1-2), and three (qFW1-1, qFW4-1, and qFW7-1) QTLs associated with GR, SL, and FW respectively, which were further validated using chromosome segment substitution lines (CSSLs). Integrating gene expression, gene annotation, and haplotype analysis, we found 21 strong candidate genes significantly associated with SV. In addition, the SV-related functions of LOC_Os01g11270 and LOC_Os01g55240 were further verified by corresponding CRISPR/Cas9 gene-edited mutants. Thus, these results provide clues for elucidating the genetic basis of SV control. The candidate genes or QTLs would be helpful for improving DS by molecular marker-assisted selection (MAS) breeding in rice.
Collapse
Affiliation(s)
- Liping Dai
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xueli Lu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lan Shen
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Guangheng Zhang
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenyu Gao
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Li Zhu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jiang Hu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Deyong Ren
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Zhang
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qing Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
8
|
Xiaolin Z, Baoqiang W, Xian W, Xiaohong W. Identification of the CIPK-CBL family gene and functional characterization of CqCIPK14 gene under drought stress in quinoa. BMC Genomics 2022; 23:447. [PMID: 35710332 PMCID: PMC9204864 DOI: 10.1186/s12864-022-08683-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background Calcineurin-like Protein (CBL) and CBL interacting protein kinase (CIPK) play a key role in plant signal transduction and response to various environmental stimuli. Quinoa, as an important plant with high nutritional value, can meet the basic nutritional needs of human Cash crop, is also susceptible to abiotic stress. However, CBL-CIPK in quinoa have not been reported. Results In this study, 16 CBL and 41 CIPK genes were identified in quinoa. CBL-CIPK gene shows different intron-exon gene structure and motif, they participate in different biological processes, and form a complex regulatory network between CBL-CIPK proteins. Many cis-regulatory element associated with ABA and drought have been found. The expression patterns of CBL-CIPK showed different expression patterns in various abiotic stresses and tissues. RT-qPCR showed that most members of these two gene families were involved in drought regulation of quinoa, in particular, the expression levels of CqCIPK11, CqCIPK15, CqCIPK37 and CqCBL13 increased significantly under drought stress. Conclusions The structures and functions of the CBL-CIPK family in quinoa were systematically explored. Many CBL-CIPK may play vital roles in the regulation of organ development, growth, and responses to abiotic stresses. This research has great significance for the functional characterisation of the quinoa CBL-CIPK family and our understanding of the CBL-CIPK family in higher plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08683-6.
Collapse
Affiliation(s)
- Zhu Xiaolin
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.,College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.,Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wang Baoqiang
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.,College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.,Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wang Xian
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.,College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei Xiaohong
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China. .,College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China. .,Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
9
|
Bundó M, Martín-Cardoso H, Pesenti M, Gómez-Ariza J, Castillo L, Frouin J, Serrat X, Nogués S, Courtois B, Grenier C, Sacchi GA, San Segundo B. Integrative Approach for Precise Genotyping and Transcriptomics of Salt Tolerant Introgression Rice Lines. FRONTIERS IN PLANT SCIENCE 2022; 12:797141. [PMID: 35126422 PMCID: PMC8813771 DOI: 10.3389/fpls.2021.797141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 05/24/2023]
Abstract
Rice is the most salt sensitive cereal crop and its cultivation is particularly threatened by salt stress, which is currently worsened due to climate change. This study reports the development of salt tolerant introgression lines (ILs) derived from crosses between the salt tolerant indica rice variety FL478, which harbors the Saltol quantitative trait loci (QTL), and the salt-sensitive japonica elite cultivar OLESA. Genotyping-by-sequencing (GBS) and Kompetitive allele specific PCR (KASPar) genotyping, in combination with step-wise phenotypic selection in hydroponic culture, were used for the identification of salt-tolerant ILs. Transcriptome-based genotyping allowed the fine mapping of indica genetic introgressions in the best performing IL (IL22). A total of 1,595 genes were identified in indica regions of IL22, which mainly located in large introgressions at Chromosomes 1 and 3. In addition to OsHKT1;5, an important number of genes were identified in the introgressed indica segments of IL22 whose expression was confirmed [e.g., genes involved in ion transport, callose synthesis, transcriptional regulation of gene expression, hormone signaling and reactive oxygen species (ROS) accumulation]. These genes might well contribute to salt stress tolerance in IL22 plants. Furthermore, comparative transcript profiling revealed that indica introgressions caused important alterations in the background gene expression of IL22 plants (japonica cultivar) compared with its salt-sensitive parent, both under non-stress and salt-stress conditions. In response to salt treatment, only 8.6% of the salt-responsive genes were found to be commonly up- or down-regulated in IL22 and OLESA plants, supporting massive transcriptional reprogramming of gene expression caused by indica introgressions into the recipient genome. Interactions among indica and japonica genes might provide novel regulatory networks contributing to salt stress tolerance in introgression rice lines. Collectively, this study illustrates the usefulness of transcriptomics in the characterization of new rice lines obtained in breeding programs in rice.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | | | - Michele Pesenti
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy – DiSAA, University of Milan, Milan, Italy
| | - Jorge Gómez-Ariza
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Julien Frouin
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Xavier Serrat
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Nogués
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Brigitte Courtois
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Cécile Grenier
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy – DiSAA, University of Milan, Milan, Italy
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|