1
|
Vinson CC, Mangaravite E, Louro Lopes HN, de Almeida ELM, Kerkhoven E, Vieira Barros JV, Ramos MLG, Quadros Junior WR, Williams TCR. Flux in the field: genome-scale modelling reveals changes in soybean (Glycine max) seed reserve metabolism under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109905. [PMID: 40267531 DOI: 10.1016/j.plaphy.2025.109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Soybean (Glyine max) is particularly sensitive to drought stress during reproductive growth, which causes decreased productivity. Rates of reserve accumulation are altered, indicating perturbations in source-sink relations between different organs and in the metabolism of the developing seeds. Here we performed field experiments using controlled irrigation and in silico flux balance analysis to determine how drought alters the mobilisation of reserves in vegetative organs and their accumulation in the seed. Reduced irrigation resulted in stomatal closure and lower rates of photosynthesis and transpiration, together with earlier senescence in leaves and stems, characterized by decreases in starch, nitrogen and fatty acids. On the other hand, seed reserve accumulation, demonstrated by decreasing starch and increasing nitrogen, fatty acids and raffinose series oligosaccharides occurred earlier under stress. This shift in development, with a shortened period of grain filling, ultimately resulted in decreased productivity. The experimental data was used to constrain a genome-scale metabolic model of soybean, and flux balance analysis of seed metabolism predicted that whilst stress affected metabolism the relative distribution of fluxes showed a degree of robustness. Simulations performed with different rates of photon usage support multiple possible roles for seed photosynthesis in reserve accumulation. Overall drought leads to earlier senescence and a shorter window for seed filling that together with alterations in seed metabolism results in reduced productivity.
Collapse
Affiliation(s)
- Christina Cleo Vinson
- Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Brazil; Universidade Federal do Pará, Instituto de Ciências Biológicas, Faculdade de Biotecnologia, Brazil
| | - Erica Mangaravite
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Botânica, Brazil; Universidade Federal de Viçosa, Departamento de Microbiologia, Laboratório de Fisiologia de Microrganismos, Brazil
| | | | | | - Eduard Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800 Konges, Denmark
| | | | | | | | | |
Collapse
|
2
|
da Silva PC, Ribeiro Junior WQ, Ramos MLG, Lopes MF, Santana CC, Casari RADCN, Brasileiro LDO, Veiga AD, Rocha OC, Malaquias JV, Souza NOS, Roig HL. Multispectral Images for Drought Stress Evaluation of Arabica Coffee Genotypes Under Different Irrigation Regimes. SENSORS (BASEL, SWITZERLAND) 2024; 24:7271. [PMID: 39599048 PMCID: PMC11598243 DOI: 10.3390/s24227271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
The advancement of digital agriculture combined with computational tools and Unmanned Aerial Vehicles (UAVs) has opened the way to large-scale data collection for the calculation of vegetation indices (VIs). These vegetation indexes (VIs) are useful for agricultural monitoring, as they highlight the inherent characteristics of vegetation and optimize the spatial and temporal evaluation of different crops. The experiment tested three coffee genotypes (Catuaí 62, E237 and Iapar 59) under five water regimes: (1) FI 100 (year-round irrigation with 100% replacement of evapotranspiration), (2) FI 50 (year-round irrigation with 50% evapotranspiration replacement), (3) WD 100 (no irrigation from June to September (dry season) and, thereafter, 100% evapotranspiration replacement), (4) WD 50 (no irrigation from June to September (water stress) and, thereafter, 50% evapotranspiration replacement) and (5) rainfed (no irrigation during the year). The irrigated treatments were watered with irrigation and precipitation. Most indices were highest in response to full irrigation (FI 100). The values of the NDVI ranged from 0.87 to 0.58 and the SAVI from 0.65 to 0.38, and the values of these indices were lowest for genotype E237 in the rainfed areas. The indices NDVI, OSAVI, MCARI, NDRE and GDVI were positively correlated very strongly with photosynthesis (A) and strongly with transpiration (E) of the coffee trees. On the other hand, temperature-based indices, such as canopy temperature and the TCARI index correlated negatively with A, E and stomatal conductance (gs). Under full irrigation, the tested genotypes did not differ between the years of evaluation. Overall, the index values of Iapar 59 exceeded those of the other genotypes. The use of VIs to evaluate coffee tree performance under different water managements proved efficient in discriminating the best genotypes and optimal water conditions for each genotype. Given the economic importance of coffee as a crop and its susceptibility to extreme events such as drought, this study provides insights that facilitate the optimization of productivity and resilience of plantations under variable climatic conditions.
Collapse
Affiliation(s)
| | | | | | - Maurício Ferreira Lopes
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Brasília 70910970, Brazil
| | - Charles Cardoso Santana
- Instituto Tecnológico de Agropecuária de Pitangui (ITAP), Empresa de Pesquisa Agropecuária de Minas Gerais, Pitangui 35650000, Brazil
| | | | | | - Adriano Delly Veiga
- Embrapa Cerrados, Empresa Brasileira de Pesquisa Agropecuária, Planaltina 73310970, Brazil; (L.d.O.B.)
| | - Omar Cruz Rocha
- Embrapa Café, Empresa Brasileira de Pesquisa Agropecuária, BR 020, Km 18, Brasília 73310970, Brazil
| | - Juaci Vitória Malaquias
- Embrapa Cerrados, Empresa Brasileira de Pesquisa Agropecuária, Planaltina 73310970, Brazil; (L.d.O.B.)
| | | | - Henrique Llacer Roig
- Laboratório de Geoprocessamento,, Instituto de Geociências, Universidade de Brasília, Brasília 70910970, Brazil
| |
Collapse
|
3
|
Pulvento C, Bazile D. Worldwide Evaluations of Quinoa-Biodiversity and Food Security under Climate Change Pressures: Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:868. [PMID: 36840215 PMCID: PMC9959060 DOI: 10.3390/plants12040868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Quinoa (Chenopodium quinoa Willd [...].
Collapse
Affiliation(s)
- Cataldo Pulvento
- Department of Soil, Plant and Food Science (DISSPA) University of Bari, 70121 Bari, Italy
| | - Didier Bazile
- CIRAD, UMR SENS, F-34398 Montpellier, France
- SENS, Univ Montpellier, CIRAD, F-34398 Montpellier, France
| |
Collapse
|
4
|
Physiological Changes of Arabica Coffee under Different Intensities and Durations of Water Stress in the Brazilian Cerrado. PLANTS 2022; 11:plants11172198. [PMID: 36079581 PMCID: PMC9460576 DOI: 10.3390/plants11172198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Coffee farmers have faced problems due to drought periods, with irrigation being necessary. In this sense, this study aimed to evaluate the responses to different levels and durations of water deficit in arabica coffee genotypes in the Cerrado region. The experiment consisted of three Coffea arabica genotypes and five water regimes: full irrigation (FI 100 and FI 50—full irrigation with 100% and 50% replacement of evapotranspiration, respectively), water deficit (WD 100 and WD 50—water deficit from June to September, with 100% and 50% replacement of evapotranspiration, respectively) and rainfed (without irrigation). The variables evaluated were gas exchange, relative water content (RWC) and productivity. The results showed that during stress, plants under the FI water regime showed higher gas exchange and RWC, differently from what occurred in the WD and rainfed treatments; however, after irrigation, coffee plants under WDs regained their photosynthetic potential. Rainfed and WD 50 plants had more than 50% reduction in RWC compared to FIs. The Iapar 59 cultivar was the most productive genotype and the E237 the lowest. Most importantly, under rainfed conditions, the plants showed lower physiological and productive potential, indicating the importance of irrigation in Coffea arabica in the Brazilian Cerrado.
Collapse
|
5
|
Dumschott K, Wuyts N, Alfaro C, Castillo D, Fiorani F, Zurita-Silva A. Morphological and Physiological Traits Associated with Yield under Reduced Irrigation in Chilean Coastal Lowland Quinoa. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030323. [PMID: 35161304 PMCID: PMC8839172 DOI: 10.3390/plants11030323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/02/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) is a genetically diverse crop that has gained popularity in recent years due to its high nutritional content and ability to tolerate abiotic stresses such as salinity and drought. Varieties from the coastal lowland ecotype are of particular interest due to their insensitivity to photoperiod and their potential to be cultivated in higher latitudes. We performed a field experiment in the southern Atacama Desert in Chile to investigate the responses to reduced irrigation of nine previously selected coastal lowland self-pollinated (CLS) lines and the commercial cultivar Regalona. We found that several lines exhibited a yield and seed size superior to Regalona, also under reduced irrigation. Plant productivity data were analyzed together with morphological and physiological traits measured at the visible inflorescence stage to estimate the contribution of these traits to differences between the CLS lines and Regalona under full and reduced irrigation. We applied proximal sensing methods and found that thermal imaging provided a promising means to estimate variation in plant water use relating to yield, whereas hyperspectral imaging separated lines in a different way, potentially related to photosynthesis as well as water use.
Collapse
Affiliation(s)
- Kathryn Dumschott
- Institute for Biology I, BioSC, RWTH Aachen University, 52056 Aachen, Germany;
- Institute of Bio- and Geosciences, Bioinformatics (IBG-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nathalie Wuyts
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany;
| | - Christian Alfaro
- Centro de Investigación Intihuasi (AZS), Instituto de Investigaciones Agropecuarias, La Serena 1722093, Chile; (C.A.); (D.C.)
- Centro de Investigación Rayentué (CA), Instituto de Investigaciones Agropecuarias, Rengo 2940000, Chile
- Centro de Investigación Quilamapu, Instituto de Investigaciones Agropecuarias, Chillán 3780000, Chile
| | - Dalma Castillo
- Centro de Investigación Intihuasi (AZS), Instituto de Investigaciones Agropecuarias, La Serena 1722093, Chile; (C.A.); (D.C.)
- Centro de Investigación Rayentué (CA), Instituto de Investigaciones Agropecuarias, Rengo 2940000, Chile
- Centro de Investigación Quilamapu, Instituto de Investigaciones Agropecuarias, Chillán 3780000, Chile
| | - Fabio Fiorani
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany;
| | - Andrés Zurita-Silva
- Centro de Investigación Intihuasi (AZS), Instituto de Investigaciones Agropecuarias, La Serena 1722093, Chile; (C.A.); (D.C.)
- Centro de Investigación Rayentué (CA), Instituto de Investigaciones Agropecuarias, Rengo 2940000, Chile
- Centro de Investigación Quilamapu, Instituto de Investigaciones Agropecuarias, Chillán 3780000, Chile
| |
Collapse
|
6
|
Hafez EM, Gowayed SM, Nehela Y, Sakran RM, Rady AMS, Awadalla A, Omara AED, Alowaiesh BF. Incorporated Biochar-Based Soil Amendment and Exogenous Glycine Betaine Foliar Application Ameliorate Rice ( Oryza sativa L.) Tolerance and Resilience to Osmotic Stress. PLANTS 2021; 10:plants10091930. [PMID: 34579461 PMCID: PMC8471834 DOI: 10.3390/plants10091930] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/24/2023]
Abstract
Osmotic stress is a major physiologic dysfunction that alters the water movement across the cell membrane. Soil salinity and water stress are major causal factors of osmotic stress that severely affect agricultural productivity and sustainability. Herein, we suggested and evaluated the impact of integrated biochar-based soil amendment and exogenous glycine betaine application on the growth, physiology, productivity, grain quality, and osmotic stress tolerance of rice (Oryza sativa L., cv. Sakha 105) grown in salt-affected soil under three irrigation intervals (6, 9, or 12 days), as well as soil properties and nutrient uptake under field conditions during the 2019 and 2020 seasons. Our findings showed that dual application of biochar and glycine betaine (biochar + glycine betaine) reduced the soil pH, electrical conductivity, and exchangeable sodium percentage. However, it enhanced the K+ uptake which increased in the leaves of treated-rice plants. Additionally, biochar and glycine betaine supplementation enhanced the photosynthetic pigments (chlorophyll a, b, and carotenoids) and physiological attributes (net photosynthetic rate, stomatal conductance, relative water content, and electrolyte leakage) of osmotic-stressed rice plants. Biochar + glycine betaine altered the activity of antioxidant-related enzymes (catalase, ascorbate peroxide, and peroxidase). Moreover, it improved the yield components, biological yield, and harvest index, as well as the nutrient value of rice grains of osmotic-stressed rice plants. Collectively, these findings underline the potential application of biochar and glycine betaine as a sustainable eco-friendly strategy to improve plant resilience, not only rice, but other plant species in general and other cereal crops in particular, to abiotic stress, particularly those growing in salt-affected soil.
Collapse
Affiliation(s)
- Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Salah M. Gowayed
- Department of Botany, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
- Citrus Research and Education Center, Department of Plant Pathology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
- Correspondence:
| | - Raghda M. Sakran
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Asmaa M. S. Rady
- Crop Science Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Abdelmoniem Awadalla
- Department of Agronomy, Faculty of Agriculture and Natural Resources, Aswan University, Aswan 81528, Egypt;
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Bassam F. Alowaiesh
- Biology Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia;
| |
Collapse
|