1
|
Donoso C, Raluca MA, Chávez-Jinez S, Vera E. Hass Avocado ( Persea americana Mill) Peel Extract Reveals Antimicrobial and Antioxidant Properties against Verticillium theobromae, Colletotrichum musae, and Aspergillus niger Pathogens Affecting Musa acuminata Colla Species, in Ecuador. Microorganisms 2024; 12:1929. [PMID: 39338603 PMCID: PMC11434585 DOI: 10.3390/microorganisms12091929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The utilization of agroindustrial residues, such as avocado peel, as a source of bioactive compounds with antioxidant properties has garnered significant attention. In this study, we investigated the antioxidant potential using the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ORAC (oxygen radical absorbance capacity) methods, along with the antimicrobial activity of phenolic compounds extracted from Hass avocado peel. These soluble polyphenols were quantified and identified using high-performance liquid chromatography (HPLC). The research focused on their effects against three fungal pathogens, Verticillium theobromae, Colletotrichum musae, and Aspergillus niger, which significantly impact banana crops, an essential agricultural commodity in Ecuador. The results have revealed that the application of 80% ethanol as an organic solvent led to increased soluble polyphenol content compared to 96% ethanol. Extraction time significantly influenced the phenolic content, with the highest values obtained at 90 min. Interestingly, despite substantial mycelial growth observed across all extract concentrations, the antifungal effect varied among the pathogens. Specifically, V. theobromae exhibited the highest sensitivity, while C. musae and A. niger were less affected. These results underscore the importance of considering both antioxidant and antimicrobial properties when evaluating natural extracts for potential applications in plant disease management.
Collapse
Affiliation(s)
- Caterine Donoso
- Departamento de Ciencias de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional EPN, Quito 170143, Ecuador; (C.D.); (E.V.)
| | - Mihai A. Raluca
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Ruminahui s/n y, Sangolqui 171103, Ecuador;
| | - Stephanie Chávez-Jinez
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Ruminahui s/n y, Sangolqui 171103, Ecuador;
| | - Edwin Vera
- Departamento de Ciencias de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional EPN, Quito 170143, Ecuador; (C.D.); (E.V.)
| |
Collapse
|
2
|
Nadon S, Leksawasdi N, Jantanasakulwong K, Rachtanapun P, Ruksiriwanich W, Sommano SR, Khaneghah AM, Castagnini JM, Barba FJ, Phimolsiripol Y. Antioxidant and Antimicrobial Properties and GC-MS Chemical Compositions of Makwaen Pepper (Zanthoxylum myriacanthum) Extracted Using Supercritical Carbon Dioxide. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112211. [PMID: 37299190 DOI: 10.3390/plants12112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
This research aimed to optimize pressure (10-20 MPa) and temperature (45-60 °C) conditions for supercritical fluid extraction (SFE) of Makwaen pepper (Zanthoxylum myriacanthum) extract (ME) in comparison to conventional hydro-distillation extraction. Various quality parameters, including yield, total phenolic compounds, antioxidants, and antimicrobial activities of the extracts, were assessed and optimized using a central composite design. The optimal SFE conditions were found to be 20 MPa at 60 °C, which resulted in the highest yield (19%) and a total phenolic compound content of 31.54 mg GAE/mL extract. IC50 values for DPPH and ABTS assays were determined to be 26.06 and 19.90 μg/mL extract, respectively. Overall, the ME obtained through SFE exhibited significantly better physicochemical and antioxidant properties compared to ME obtained through hydro-distillation extraction. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that beta-pinene was the major component in the ME obtained through SFE (23.10%), followed by d-limonene, alpha-pinene, and terpinen-4-ol at concentrations of 16.08, 7.47, and 6.34%, respectively. On the other hand, the hydro-distillation-extracted ME showed stronger antimicrobial properties than the SFE-extracted ME. These findings suggest that both SFE and hydro-distillation have the potential for extracting Makwaen pepper, depending on the intended purpose of use.
Collapse
Affiliation(s)
- Sudarut Nadon
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Noppol Leksawasdi
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Warintorn Ruksiriwanich
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, 36 Rakowiecka St., 02-532 Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, 16/21 Azadliq Ave, AZ1010 Baku, Azerbaijan
| | - Juan M Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
4
|
Gao L, Xu X, Liu W, Xie J, Zhang H, Du S. A sensitive multimode dot-filtration strip for the detection of Salmonella typhimurium using MoS2@Fe3O4. Mikrochim Acta 2022; 189:475. [DOI: 10.1007/s00604-022-05560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/30/2022] [Indexed: 11/27/2022]
|
5
|
Preliminary Studies on Suppression of Important Plant Pathogens by Using Pomegranate and Avocado Residual Peel and Seed Extracts. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Potential synergistic action of aqueous extracts of pomegranate peel (PP), avocado peel (AP), and avocado seed (AS) wastes isolated by microwave-assisted extraction were assessed in in vitro and in vivo assays as biocontrol agents against several plant pathogenic fungi. The study findings contribute to the utilization of a value-added industrial byproduct and provide significant value in advancing the development of new plant protecting compositions that benefit from the synergistic effects between two important plant species that contain several natural bioactive compounds. More specifically, the in vitro results proved that the use of 100%-pure (PP) extracted waste affected the mycelium growth of Penicillium expansum. Furthermore, mycelium growth of Aspergillus niger was decreased by 10.21% compared to control after 7 days of growth in medium agar containing 100% AP and extracted waste. Moreover, mycelium growth of Botrytis cinerea was affected by equal volume of avocado extraction wastes (50% peel and 50% seed) only at the first 3 days of the inoculation, while at the seventh day of the inoculation there was no effect on the mycelium growth. Equal volumes of the examined wastes showed decreased mycelium growth of Fusarium oxysporum f.sp. lycopersici by 6%, while Rhizoctonia solani mycelium growth was found to be the most sensitive in PP application. In addition, the in vivo assay shown that PP extract suppresses damage of tomato plants caused by R. solani followed by extracted wastes from AP. Based on the research findings, it can be argued that PP and AP extracts can be used as natural antifungals instead of dangerous synthetic antifungals to effectively treat phytopathogens that cause fruit and vegetable losses during cultivation.
Collapse
|
6
|
Antimicrobial Properties of Lyophilized Extracts of Olive Fruit, Pomegranate and Orange Peel Extracts against Foodborne Pathogenic and Spoilage Bacteria and Fungi In Vitro and in Food Matrices. Molecules 2021; 26:molecules26227038. [PMID: 34834130 PMCID: PMC8621086 DOI: 10.3390/molecules26227038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Several novel antimicrobials with different concentrations of olive, pomegranate, and orange fruit pulp extracts were produced from agricultural byproducts and, after lyophilization, their antimicrobial activity and potential synergistic effects were evaluated in vitro and in food samples against foodborne pathogenic and spoilage bacteria and fungi. The Minimum Inhibitory of the tested bacteria was 7.5% or 10%, while fungi were inhibited at a concentration of 10% or above. The optical density of bacterial and yeast cultures was reduced to a different extent with all tested antimicrobial powders, compared to a control without antimicrobials, and mycelium growth of fungi was also restricted with extracts containing at least 90% olive extract. In food samples with inoculated pathogens and spoilage bacteria and fungi, the 100% olive extract was most inhibitory against E. coli, S. typhimurium, and L. monocytogenes in fresh burger and cheese spread samples (by 0.6 to 1.8 log cfu/g), except that S. typhimurium was better inhibited by a 90% olive and 10% pomegranate extract in burgers. The latter extract was also the most effective in controlling the growth of inoculated fungi (Aspergillus niger, Penicillium italicum, Rhodotorula mucilaginosa) in both yogurt and tomato juice samples, where it reduced fungal growth by 1–2.2 log cfu/g at the end of storage period. The results demonstrate that these novel encapsulated extracts could serve as natural antimicrobials of wide spectrum, in order to replace synthetic preservatives in foods and cosmetics.
Collapse
|