1
|
Ssemugenze B, Ocwa A, Bojtor C, Illés Á, Esimu J, Nagy J. Impact of research on maize production challenges in Hungary. Heliyon 2024; 10:e26099. [PMID: 38510009 PMCID: PMC10951463 DOI: 10.1016/j.heliyon.2024.e26099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
Maize (Zea mays L), as a major cereal crop produced in Hungary in addition to wheat, attracts enormous research from both educational and non-educational institutions. Research is aimed at addressing the key abiotic, biotic and social economic constraints. The stakeholders and institutions involved in research are spread all over Hungary. Currently, no review has been done to comprehensively reveal the trend of maize research in Hungary, as well as key players such as institutions, universities, industry and researchers. Hence, this bibliographic review was conducted to: i) identify the major research institutions and their contribution towards maize research in Hungary; ii) evaluate the major maize research areas in Hungary between 1975 and 2022. Literature search was conducted in Web of Science (WoS) database using keywords; 'maize' OR 'maize' + 'Research' + 'Hungary'. Bibliometric analyses were performed using the VOSviewer software. Changes in the publication trend of documents was tested using Mann Kendall Test. A total of 947 publications related to the topic were published by 441 institutions between 1975 and 2022. There was a significant (p = 0.001) positive increase in the number of published documents. Hungarian Academy of Science (210 documents) and University of Debrecen (132 documents) recorded the highest number of publications contributing 58.7% of the maize research literature in Hungary. The major research areas included: increasing maize yield, hybrid development, pests and diseases, irrigation, fertilization (nitrogen), drought, temperature, gene expression and climate change. The increasing number of published documents signifies an improved response to addressing maize production challenges through research in order to boost its productivity.
Collapse
Affiliation(s)
- Brian Ssemugenze
- Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi street, 4032, Debrecen, Hungary
- Faculty of Agriculture, Uganda Martyrs University, P.O. Box 5498, Kampala, Uganda
| | - Akasairi Ocwa
- Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi street, 4032, Debrecen, Hungary
- Department of Agriculture Production, Faculty of Agriculture, Kyambogo University, P.O. Box 1, Kyambogo, Kampala, Uganda
| | - Csaba Bojtor
- Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi street, 4032, Debrecen, Hungary
| | - Árpád Illés
- Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi street, 4032, Debrecen, Hungary
| | - Joseph Esimu
- Research School of Biology, Australian National University, ACT, Canberra 2601, Australia
| | - János Nagy
- Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi street, 4032, Debrecen, Hungary
| |
Collapse
|
2
|
Wang HY, Li PF, Wang Y, Chi CY, Jin XX, Ding GH. Overexpression of cucumber CYP82D47 enhances resistance to powdery mildew and Fusarium oxysporum f. sp. cucumerinum. Funct Integr Genomics 2024; 24:14. [PMID: 38236308 DOI: 10.1007/s10142-024-01287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
Cytochrome P450s are a large family of protein-encoding genes in plant genomes, many of which have not yet been comprehensively characterized. Here, a novel P450 gene, CYP82D47, was isolated and functionally characterized from cucumber (Cucumis sativus L.). Quantitative real-time reverse-transcription polymerase chain reaction analysis revealed that CYP82D47 expression was triggered by salicylic acid (SA) and ethephon (ETH). Expression analysis revealed a correlation between CYP82D47 transcript levels and plant defense responses against powdery mildew (PM) and Fusarium oxysporum f. sp. cucumerinum (Foc). Although no significant differences were observed in disease resistance between CYP82D47-RNAi and wild-type cucumber, overexpression (OE) of CYP82D47 enhanced PM and Foc resistance in cucumber. Furthermore, the expression levels of SA-related genes (PR1, PR2, PR4, and PR5) increased in CYP82D47-overexpressing plants 7 days post fungal inoculation. The levels of ETH-related genes (EIN3 and EBF2) were similarly upregulated. The observed enhanced resistance was associated with the upregulation of SA/ETH-signaling-dependent defense genes. These findings indicate the crucial role of CYP82D47 in pathogen defense in cucumber. CYP82D47-overexpressing cucumber plants exhibited heightened susceptibility to both diseases. The study results offer important insights that could aid in the development of disease-resistant cucumber cultivars and elucidate the molecular mechanisms associated with the functions of CYP82D47.
Collapse
Affiliation(s)
| | - Peng-Fei Li
- Harbin Normal University, Harbin, 150025, China
| | - Yu Wang
- Harbin Normal University, Harbin, 150025, China
| | - Chun-Yu Chi
- Harbin Normal University, Harbin, 150025, China
| | - Xiao-Xia Jin
- Harbin Normal University, Harbin, 150025, China.
| | - Guo-Hua Ding
- Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
3
|
Wang Y, Xu C, Gao Y, Ma Y, Zhang X, Zhang L, Di H, Ma J, Dong L, Zeng X, Zhang N, Xu J, Li Y, Gao C, Wang Z, Zhou Y. Physiological Mechanisms Underlying Tassel Symptom Formation in Maize Infected with Sporisorium reilianum. PLANTS (BASEL, SWITZERLAND) 2024; 13:238. [PMID: 38256790 PMCID: PMC10820020 DOI: 10.3390/plants13020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Head smut is a soil-borne fungal disease caused by Sporisorium reilianum that infects maize tassels and ears. This disease poses a tremendous threat to global maize production. A previous study found markedly different and stably heritable tassel symptoms in some maize inbred lines with Sipingtou blood after infection with S. reilianum. In the present study, 55 maize inbred lines with Sipingtou blood were inoculated with S. reilianum and classified into three tassel symptom types (A, B, and C). Three maize inbred lines representing these classes (Huangzao4, Jing7, and Chang7-2, respectively) were used as test materials to investigate the physiological mechanisms of tassel formation in infected plants. Changes in enzyme activity, hormone content, and protein expression were analyzed in all three lines after infection and in control plants. The activities of peroxidase (POD), superoxide dismutase (SOD), and phenylalanine-ammonia-lyase (PAL) were increased in the three typical inbred lines after inoculation. POD and SOD activities showed similar trends between lines, with the increase percentage peaking at the V12 stage (POD: 57.06%, 63.19%, and 70.28% increases in Huangzao4, Jing7, and Chang7-2, respectively; SOD: 27.01%, 29.62%, and 47.07% in Huangzao4, Jing7, and Chang7-2, respectively. These were all higher than in the disease-resistant inbred line Mo17 at the same growth stage); this stage was found to be key in tassel symptom formation. Levels of gibberellic acid (GA3), indole-3-acetic acid (IAA), and abscisic acid (ABA) were also altered in the three typical maize inbred lines after inoculation, with changes in GA3 and IAA contents tightly correlated with tassel symptoms after S. reilianum infection. The differentially expressed proteins A5H8G4, P09233, and Q8VXG7 were associated with changes in enzyme activity, whereas P49353, P13689, and P10979 were associated with changes in hormone contents. Fungal infection caused reactive oxygen species (ROS) and nitric oxide (NO) bursts in the three typical inbred lines. This ROS accumulation caused biofilm disruption and altered host signaling pathways, whereas NO signaling triggered strong secondary metabolic responses in the host and altered the activities of defense-related enzymes. These factors together resulted in the formation of varying tassel symptoms. Thus, interactions between S. reilianum and susceptible maize materials were influenced by a variety of signals, enzymes, hormones, and metabolic cycles, encompassing a very complex regulatory network. This study preliminarily identified the physiological mechanisms leading to differences in tassel symptoms, deepening our understanding of S. reilianum-maize interactions.
Collapse
Affiliation(s)
- Yuhe Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Chuzhen Xu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Yansong Gao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Yanhua Ma
- Institute of Forage and Grass land Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Xiaoming Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Hong Di
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Jinxin Ma
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Ling Dong
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xing Zeng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Naifu Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Jiawei Xu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Yujuan Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Chao Gao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Zhenhua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Examination of Different Sporidium Numbers of Ustilago maydis Infection on Two Hungarian Sweet Corn Hybrids' Characteristics at Vegetative and Generative Stages. Life (Basel) 2023; 13:life13020433. [PMID: 36836790 PMCID: PMC9967947 DOI: 10.3390/life13020433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Corn smut is one of the major diseases in corn production. The cob infection causes high economic and quality loss. This research investigated the effects of three different concentrations of corn smut infection (2500, 5000, and 10,000 sporidia/mL) on two Hungarian sweet corn hybrids (Desszert 73 and Noa). Plants were infected at the vegetative (V4-V5) and the generative (V7) stages. The effects of the corn smut infection were evaluated at 7 and 14 days after the pathogen infection (DAPI) at vegetative and at 21 DAPI at generative stages. The photosynthetic pigments (relative chlorophyll, chlorophyll-a and b, and carotenoids), malondialdehyde (MDA), and proline concentration, activities of the antioxidant enzymes [ascorbate peroxidase (APX), guaiacol peroxidase (POX), and superoxide dismutase (SOD)], morphological characteristics (plant height, stem and cob diameter, cob length, cob and kernel weights), mineral contents (Al, B, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, P, Pb, S, Sr, and Zn), and quality parameters (dry matter, fiber, fat, ash, nitrogen, and protein) were measured. At both sampling times (7 and 14 DAPI) in both hybrids, the corn smut infection reduced the photosynthetic pigments (relative chlorophyll, chlorophylls-a, and b, and carotenoids) irrespective of the spore concentration. Under the same conditions, the MDA and proline contents, as well as the activities of APX, POX, and SOD increased at both sampling times. The negative effects of the corn smut infection were also observed at the generative stage. Only the 10,000 sporidia/mL of corn smut caused symptoms (tumor growth) on the cobs of both hybrids at 21 DAPI. Similarly, this treatment impacted adversely the cob characteristics (reduced cob length, kernel weight, and 100 grains fresh and dry weight) for both hybrids. In addition, crude fat and protein content, Mg, and Mn concentration of grains also decreased in both hybrids while the concentration of Al and Ca increased. Based on these results, the sweet corn hybrids were more susceptible to corn smut at the vegetative stage than at the generative stage.
Collapse
|
5
|
Khandagale K, Roylawar P, Kulkarni O, Khambalkar P, Ade A, Kulkarni A, Singh M, Gawande S. Comparative Transcriptome Analysis of Onion in Response to Infection by Alternaria porri (Ellis) Cifferi. FRONTIERS IN PLANT SCIENCE 2022; 13:857306. [PMID: 35481153 PMCID: PMC9036366 DOI: 10.3389/fpls.2022.857306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Purple blotch (PB) is one of the most destructive foliar diseases of onion and other alliums, caused by a necrotrophic fungal pathogen Alternaria porri. There are no reports on the molecular response of onion to PB infection. To elucidate the response of onion to A. porri infection, we consequently carried out an RNAseq analysis of the resistant (Arka Kalyan; AK) and susceptible (Agrifound rose; AFR) genotype after an artificial infection. Through differential expression analyses between control and pathogen-treated plants, we identified 8,064 upregulated and 248 downregulated genes in AFR, while 832 upregulated and 564 downregulated genes were identified in AK. A further significant reprogramming in the gene expression profile was also demonstrated by a functional annotation analysis. Gene ontology (GO) terms, which are particularly involved in defense responses and signaling, are overrepresented in current analyses such as "oxidoreductase activity," "chitin catabolic processes," and "defense response." Several key plant defense genes were differentially expressed on A. porri infection, which includes pathogenesis-related (PR) proteins, receptor-like kinases, phytohormone signaling, cell-wall integrity, cytochrome P450 monooxygenases, and transcription factors. Some of the genes were exclusively overexpressed in resistant genotype, namely, GABA transporter1, ankyrin repeat domain-containing protein, xyloglucan endotransglucosylase/hydrolase, and PR-5 (thaumatin-like). Antioxidant enzyme activities were observed to be increased after infection in both genotypes but higher activity was found in the resistant genotype, AK. This is the first report of transcriptome profiling in onion in response to PB infection and will serve as a resource for future studies to elucidate the molecular mechanism of onion-A. porri interaction and to improve PB resistance in onions.
Collapse
Affiliation(s)
- Kiran Khandagale
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Praveen Roylawar
- Department of Botany, Sangamner Nagarpalika Arts, D. J. Malpani Commerce, B. N. Sarda Science College, Sangamner, India
| | - Onkar Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | | | - Avinash Ade
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Abhijeet Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research (DOGR), Pune, India
| | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research (DOGR), Pune, India
| |
Collapse
|
6
|
The Physiological and Biochemical Responses of European Chestnut ( Castanea sativa L.) to Blight Fungus ( Cryphonectria parasitica (Murill) Barr). PLANTS 2021; 10:plants10102136. [PMID: 34685944 PMCID: PMC8537955 DOI: 10.3390/plants10102136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022]
Abstract
The most important disease of European chestnut (Castanea sativa Mill.) is chestnut blight caused by the fungus Cryphonectria parasitica (Murrill) Barr which induces yield reduction in Europe and North America. This study aimed to investigate the impacts of C. parasitica infection on the physiological and biochemical characteristics of European chestnut at two different growth stages, 3 and 6 weeks after the infection. The amount of photosynthetic pigments (chlorophyll-a, chlorophyll-b, and carotenoids), the relative chlorophyll content, and the photochemical efficiency of the photosystem II (PSII) were measured in the leaves above and below the virulent and hypovirulent C. parasitica infections. The highest values were measured in the control leaves, the lowest values were in the leaves of the upper part of virulent necrosis. Antioxidant enzyme activities such as ascorbate peroxidase (APX), guaiacol peroxidase (POD), and superoxide dismutase (SOD), proline, and malondialdehyde concentrations were also investigated. In each of these measured values, the lowest level was measured in the control leaves, while the highest was in leaves infected with the virulent fungal strain. By measuring all of these stress indicator parameters the responses of chestnut to C. parasitica infection can be monitored and determined. The results of this study showed that the virulent strain caused more pronounced defense responses of chestnut’s defense system. The measured parameter above the infection was more exposed to the blight fungus disease relative to the leaves below the infection.
Collapse
|