1
|
Sultan SME, Yousef AF, Ali WM, Mohamed AAA, Ahmed ARM, Shalaby ME, Teiba II, Hassan AM, Younes NA, Kotb EF. Cold atmospheric plasma enhances morphological and biochemical attributes of tomato seedlings. BMC PLANT BIOLOGY 2024; 24:420. [PMID: 38760701 PMCID: PMC11102223 DOI: 10.1186/s12870-024-04961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/29/2024] [Indexed: 05/19/2024]
Abstract
Cold atmospheric plasma (CAP) is a physical technology with notable effects on living organisms. In the present study, tomato seeds (Solanum lycopersicum var. Bassimo Mill.) were exposed to CAP for various time intervals, ranging from 1 to 5 min, in both continuous and intermittent periods, and were compared with a control group that received no CAP treatment. Seedlings grown from treated seeds exhibited improvements in levels of growth traits, photosynthetic pigments, and metabolite contents when compared to the control group. Seedlings from seeds treated with S04 displayed significant increases in shoot and root lengths, by 32.45% and 20.60% respectively, compared to the control group. Moreover, seedlings from seeds treated with S01 showed a 101.90% increase in total protein, whereas those treated with S02 experienced a 119.52% increase in carbohydrate content. These findings highlight the substantial improvements in growth characteristics, photosynthetic pigments, and metabolite levels in seedlings from treated seeds relative to controls. Total antioxidant capacity was boosted by CAP exposure. The activities of enzymes including superoxide dismutase, catalase, and peroxidases were stimulated by S02 and exceeded control treatment by (177.48%, 137.41%, and 103.32%), respectively. Additionally, exposure to S04 increased the levels of non-enzymatic antioxidants like flavonoids, phenolics, saponins, and tannins over the control group (38.08%, 30.10%, 117.19%, and 94.44%), respectively. Our results indicate that CAP-seed priming is an innovative and cost-effective approach to enhance the growth, bioactive components, and yield of tomato seedlings.
Collapse
Affiliation(s)
- Sadoun M E Sultan
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Assiut Branch), Assiut, 71524, Egypt
| | - Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Assiut Branch), Assiut, 71524, Egypt
| | - Waleed M Ali
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Assiut Branch), Assiut, 71524, Egypt
| | - Amal A A Mohamed
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Abdel-Raddy M Ahmed
- Department of Agronomy (Biochemistry), Faculty of Agriculture, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Mohamed E Shalaby
- Department of Plant production, Collage of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Islam I Teiba
- Microbiology, Botany Department, Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt
| | - A M Hassan
- Department of Physics, College of Science, University of Al-Azhar (Assiut Branch), Assiut, 71542, Egypt
| | - Nabil A Younes
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Assiut Branch), Assiut, 71524, Egypt
| | - E F Kotb
- Department of Physics, College of Science, University of Al-Azhar (Assiut Branch), Assiut, 71542, Egypt.
| |
Collapse
|
2
|
Konchekov EM, Gusein-zade N, Burmistrov DE, Kolik LV, Dorokhov AS, Izmailov AY, Shokri B, Gudkov SV. Advancements in Plasma Agriculture: A Review of Recent Studies. Int J Mol Sci 2023; 24:15093. [PMID: 37894773 PMCID: PMC10606361 DOI: 10.3390/ijms242015093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
This review is devoted to a topic of high interest in recent times-the use of plasma technologies in agriculture. The increased attention to these studies is primarily due to the demand for the intensification of food production and, at the same time, the request to reduce the use of pesticides. We analyzed publications, focusing on research conducted in the last 3 years, to identify the main achievements of plasma agrotechnologies and key obstacles to their widespread implementation in practice. We considered the main types of plasma sources used in this area, their advantages and limitations, which determine the areas of application. We also considered the use of plasma-activated liquids and the efficiency of their production by various types of plasma sources.
Collapse
Affiliation(s)
- Evgeny M. Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| | - Namik Gusein-zade
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| | - Leonid V. Kolik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| | - Alexey S. Dorokhov
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia; (A.S.D.)
| | - Andrey Yu. Izmailov
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia; (A.S.D.)
| | - Babak Shokri
- Physics Department, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| |
Collapse
|
3
|
Perea-Brenes A, Garcia JL, Cantos M, Cotrino J, Gonzalez-Elipe AR, Gomez-Ramirez A, Lopez-Santos C. Germination and First Stages of Growth in Drought, Salinity, and Cold Stress Conditions of Plasma-Treated Barley Seeds. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2023; 3:760-770. [PMID: 37766795 PMCID: PMC10520973 DOI: 10.1021/acsagscitech.3c00121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Numerous works have demonstrated that cold plasma treatments constitute an effective procedure to accelerate seed germination under nonstress conditions. Evidence also exists about a positive effect of plasmas for germination under environmental stress conditions. For barley seeds, this work studies the influence of cold plasma treatments on the germination rate and initial stages of plant growth in common stress environments, such as drought, salinity, and low-temperature conditions. As a general result, it has been found that the germination rate was higher for plasma-treated than for untreated seeds. Plasma also induced favorable changes in plant and radicle dimensions, which depended on the environment. The obtained results demonstrate that plasma affects the biochemical metabolic chains of seeds and plants, resulting in changes in the concentration of biochemical growing factors, a faster germination, and an initially more robust plant growth, even under stress conditions. These changes in phenotype are accompanied by differences in the concentration of biomarkers such as photosynthetic pigments (chlorophylls a and b and carotenoids), reactive oxygen species, and, particularly, the amino acid proline in the leaves of young plants, with changes that depend on environmental conditions and the application of a plasma treatment. This supports the idea that, rather than an increase in seed water imbibition capacity, there are clear beneficial effects on seedling of plasma treatments.
Collapse
Affiliation(s)
- Alvaro Perea-Brenes
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
- Department
of Plant Biotechnology, Institute of Natural Resources and Agrobiology
of Seville, Consejo Superior de Investigaciones
Científicas, Seville 41012, Spain
| | - Jose Luis Garcia
- Department
of Plant Biotechnology, Institute of Natural Resources and Agrobiology
of Seville, Consejo Superior de Investigaciones
Científicas, Seville 41012, Spain
| | - Manuel Cantos
- Department
of Plant Biotechnology, Institute of Natural Resources and Agrobiology
of Seville, Consejo Superior de Investigaciones
Científicas, Seville 41012, Spain
| | - Jose Cotrino
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
- Departamento
de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Seville 41012, Spain
| | - Agustín R. Gonzalez-Elipe
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
| | - Ana Gomez-Ramirez
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
- Departamento
de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Seville 41012, Spain
| | - Carmen Lopez-Santos
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
- Departamento
de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville 41011, Spain
| |
Collapse
|
4
|
Air Atmospheric Pressure Plasma Jet to Improve Fruiting Body Production and Enhance Bioactive Phytochemicals from Mutant Cordyceps militaris (White Cordyceps militaris). FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Konchekov EM, Kolik LV, Danilejko YK, Belov SV, Artem’ev KV, Astashev ME, Pavlik TI, Lukanin VI, Kutyrev AI, Smirnov IG, Gudkov SV. Enhancement of the Plant Grafting Technique with Dielectric Barrier Discharge Cold Atmospheric Plasma and Plasma-Treated Solution. PLANTS 2022; 11:plants11101373. [PMID: 35631800 PMCID: PMC9146419 DOI: 10.3390/plants11101373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
A garden plant grafting technique enhanced by cold plasma (CAP) and plasma-treated solutions (PTS) is described for the first time. It has been shown that CAP created by a dielectric barrier discharge (DBD) and PTS makes it possible to increase the growth of Pyrus communis L. by 35–44%, and the diameter of the root collar by 10–28%. In this case, the electrical resistivity of the graft decreased by 20–48%, which indicated the formation of a more developed vascular system at the rootstock–scion interface. The characteristics of DBD CAP and PTS are described in detail.
Collapse
Affiliation(s)
- Evgeny M. Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
- Correspondence:
| | - Leonid V. Kolik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
| | - Yury K. Danilejko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
| | - Sergey V. Belov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
| | - Konstantin V. Artem’ev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
| | - Tatiana I. Pavlik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
| | - Vladimir I. Lukanin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
| | - Alexey I. Kutyrev
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia; (A.I.K.); (I.G.S.)
| | - Igor G. Smirnov
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia; (A.I.K.); (I.G.S.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia; (A.I.K.); (I.G.S.)
| |
Collapse
|
6
|
Petrukhina DI, Tkhorik OV, Shishko VI, Kharlamov VA, Tsygvintsev PN. Effects for barley growth and development of single exposure to low-temperature argon plasma at different organogenesis stages. RUDN JOURNAL OF AGRONOMY AND ANIMAL INDUSTRIES 2022. [DOI: 10.22363/2312-797x-2022-17-1-20-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The paper presents the vegetation experiments results on the low-temperature argon plasma effect on barley plants ( Hordeum vulgare L.) of the Vladimir cultivar and its influence on morphophysiological parameters and yield. Plasma treatment was once at three organogenesis stages of barley plants: 3rd leaf, tillering and booting. Plasma exposure was 15 and 30 min. The barley plants were grown to full maturity. Analysis of barley yield structure did not reveal clear patterns in the change in most parameters resulted from the plasma treatment. However, 15 min plasma exposure on barley plants in the critical development stage (3rd leaf) increased by 77.8 % (p 0.05) the root weight of plants compared with control. After treatment at the tillering stage, the number of spikelets per main stem ear increased by 18.5 % (p 0.001) after 15 min plasma exposure, and by 11.17 % (p 0.05) after 30 min exposure. An increase in the number of productive stems and the number of grains per lateral stem ear was observed. At the same time, 30 min exposure in the 3rd leaf stage reduced by 7 % (p 0.05) the plant height. And the treatment in the tillering stage reduced by 39 % (p 0.01) the root weight of barley plants. The effect of low-temperature plasma on barley plants at the booting stage was less expressed to the plasma effect at earlier development stages. This can be explained by the lower sensitivity of this stage of organogenesis. The obtained effects of single exposure to low-temperature argon plasma at different organogenesis stages of barley plants can be useful to increase barley yields.
Collapse
|