1
|
Mingorance Álvarez E, Villar Rodríguez J, López Ripado O, Mayordomo R. Antifungal Activity of Tea Tree ( Melaleuca alternifolia Cheel) Essential Oils against the Main Onychomycosis-Causing Dermatophytes. J Fungi (Basel) 2024; 10:675. [PMID: 39452627 PMCID: PMC11508421 DOI: 10.3390/jof10100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Onychomycosis is a common fungal infection that affects the nails and accounts for approximately 50% of all nail diseases. The main pathogens involved include dermatophytes, such as Trichophyton rubrum, members of the T. mentagrophytes complex, and emerging pathogens in this infection, T. schoenleinii and T. tonsurans. Tea tree (Melaleuca alternifolia Cheel) essential oil (EO) has been proposed as a promising natural alternative to traditional treatments due to its antimicrobial properties. Among its more than 100 compounds, terpinen-4-ol is one of the main contributors to the antifungal action of this EO. To determine the antifungal activity of tea tree EO against dermatophytes, we designed an in vitro study using EUCAST-AFST protocols to obtain the values of MIC (minimum inhibitory concentration) and MFC (minimum fungicidal concentration) of several commercial M. alternifolia Cheel EOs against three species of dermatophytes isolated from clinical samples with suspected toenail onychomycosis. The results showed that the microorganism most sensitive to the action of the EO was T. rubrum, which had an MIC value more than 13 times lower than the value obtained for T. schoenleinii (0.4% v/v), the most resistant isolate. No differences in antifungal activity were observed by the analysed EOs or between the MIC and MFC values. These in vitro results suggest that tea tree EO is a viable option for the alternative treatment of onychomycosis, although clinical studies are needed to confirm the long-term antifungal activity, safety and efficacy of the oils studied in a clinical context.
Collapse
Affiliation(s)
- Esther Mingorance Álvarez
- Department of Physiology, University Centre of Mérida, University of Extremadura, 06800 Mérida, Badajoz, Spain;
| | - Julia Villar Rodríguez
- Department of Nursing, Physiotherapy and Occupational Therapy, Faculty of Health Sciences, University of Castilla la Mancha, 45600 Talavera de la Reina, Toledo, Spain;
| | - Olga López Ripado
- Department of Anatomy, Cellular Biology and Zoology, University Centre of Plasencia, University of Extremadura, 10600 Plasencia, Cáceres, Spain;
| | - Raquel Mayordomo
- Department of Anatomy, Cellular Biology and Zoology, University Centre of Plasencia, University of Extremadura, 10600 Plasencia, Cáceres, Spain;
| |
Collapse
|
2
|
Moraes DCDE. Recent developments on the anti-Candida effect of amphotericin B combined with a second drug - a mini-review. AN ACAD BRAS CIENC 2023; 95:e20220033. [PMID: 37162085 DOI: 10.1590/0001-3765202320220033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/10/2022] [Indexed: 05/11/2023] Open
Abstract
Invasive Candida infections threaten human health due to the increasing incidence of resistance to the currently available antifungal agents. Amphotericin B (AMB) is the gold standard therapy to treat these infections. Nevertheless, the use of such substance in the clinic is aggravated by its toxicity. Since AMB binds to membrane sterols, it forms pores on human plasma membranes, mainly in kidney cells, leading to nephrotoxicity. The combination of this drug to a second substance could allow for the use of smaller concentrations of AMB, consequently lowering the probability of adverse effects. This mini-review summarizes information regarding an array of substances that enhance AMB antifungal activity. It may be noticed that several of these compounds target plasma membrane. Interestingly, substances approved for human use also presented combinatory anti-Candida activity with AMB. These data reinforce the potential of associating AMB to another drug as a promising therapeutical alternative to treat Candida infections. Further studies, regarding mechanism of action, pharmacokinetics and toxicity parameters must be conducted to confirm the role of these substances as adjuvant agents in candidiasis therapy.
Collapse
Affiliation(s)
- Daniel C DE Moraes
- Universidade Estácio de Sá, Bolsista do Programa de Pesquisa e Produtividade UNESA, Rua Eduardo Luiz Gomes 134, Centro, 24020-340 Niterói, RJ, Brazil
| |
Collapse
|
3
|
Fan XX, Sun WY, Li Y, Tang Q, Li LN, Yu X, Wang SY, Fan AR, Xu XQ, Chang HS. Honokiol improves depression-like behaviors in rats by HIF-1α- VEGF signaling pathway activation. Front Pharmacol 2022; 13:968124. [PMID: 36091747 PMCID: PMC9453876 DOI: 10.3389/fphar.2022.968124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that the pathogenesis of depression is closely linked to impairments in neuronal synaptic plasticity. Honokiol, a biologically active substance extracted from Magnolia Officinalis, has been proven to exert significant antidepressant effects. However, the specific mechanism of action remains unclear. In this study, PC12 cells and chronic unpredictable mild stress (CUMS) model rats were used to explore the antidepressant effects and potential mechanisms of honokiol in vitro and in rats. In vitro experiment, a cell viability detection kit was used to screen the concentration and time of honokiol administration. PC12 cells were administered with hypoxia-inducible factor-1α (HIF-1α) blocker, 2-methoxyestradiol (2-ME), and vascular endothelial growth factor receptor 2 (VEGFR-2) blocker, SU5416, to detect the expression of HIF-1α, VEGF, synaptic protein 1 (SYN 1), and postsynaptic density protein 95 (PSD 95) by western blotting. In effect, we investigated whether the synaptic plasticity action of honokiol was dependent on the HIF-1α-VEGF pathway. In vivo, behavioral tests were used to evaluate the reproducibility of the CUMS depression model and depression-like behaviors. Molecular biology techniques were used to examine mRNA and protein expression of the HIF-1α-VEGF signaling pathway and synaptic plasticity-related regulators. Additionally, molecular docking techniques were used to study the interaction between honokiol and target proteins, and predict their binding patterns and affinities. Experimental results showed that honokiol significantly reversed CUMS-induced depression-like behaviors. Mechanically, honokiol exerted a significant antidepressant effect by enhancing synaptic plasticity. At the molecular level, honokiol can activate the HIF-1α-VEGF signaling pathway in vitro and in vivo, as well as promote the protein expression levels of SYN 1 and PSD 95. Taken together, the results do not only provide an experimental basis for honokiol in the clinical treatment of depression but also suggest that the HIF-1α-VEGF pathway may be a potential target for the treatment of depression.
Collapse
Affiliation(s)
- Xiao-Xu Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Yan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Na Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ang-Ran Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Qing Xu
- Experiment Center, Encephalopathy Department, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| | - Hong-Sheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| |
Collapse
|
4
|
Ivanov M, Ćirić A, Stojković D. Emerging Antifungal Targets and Strategies. Int J Mol Sci 2022; 23:2756. [PMID: 35269898 PMCID: PMC8911111 DOI: 10.3390/ijms23052756] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
Despite abundant research in the field of antifungal drug discovery, fungal infections remain a significant healthcare burden. There is an emerging need for the development of novel antifungals since those currently available are limited and do not completely provide safe and secure protection. Since the current knowledge regarding the physiology of fungal cells and the infection mechanisms is greater than ever, we have the opportunity to use this for the development of novel generations of antifungals. In this review, we selected and summarized recent studies describing agents employing different antifungal mechanisms. These mechanisms include interference with fungal resistance, including impact on the efflux pumps and heat shock protein 90. Additionally, interference with virulence factors, such as biofilms and hyphae; the impact on fungal enzymes, metabolism, mitochondria, and cell wall; and antifungal vaccines are explored. The agents investigated belong to different classes of natural or synthetic molecules with significant attention given also to plant extracts. The efficacy of these antifungals has been studied mainly in vitro with some in vivo, and clinical studies are needed. Nevertheless, there is a large quantity of products employing novel antifungal mechanisms that can be further explored for the development of new generation of antifungals.
Collapse
Affiliation(s)
- Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.Ć.); (D.S.)
| | | | | |
Collapse
|