1
|
Gibbs JA, Burgess AJ. Application of deep learning for the analysis of stomata: a review of current methods and future directions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6704-6718. [PMID: 38716775 PMCID: PMC11565211 DOI: 10.1093/jxb/erae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/07/2024] [Indexed: 11/16/2024]
Abstract
Plant physiology and metabolism rely on the function of stomata, structures on the surface of above-ground organs that facilitate the exchange of gases with the atmosphere. The morphology of the guard cells and corresponding pore that make up the stomata, as well as the density (number per unit area), are critical in determining overall gas exchange capacity. These characteristics can be quantified visually from images captured using microscopy, traditionally relying on time-consuming manual analysis. However, deep learning (DL) models provide a promising route to increase the throughput and accuracy of plant phenotyping tasks, including stomatal analysis. Here we review the published literature on the application of DL for stomatal analysis. We discuss the variation in pipelines used, from data acquisition, pre-processing, DL architecture, and output evaluation to post-processing. We introduce the most common network structures, the plant species that have been studied, and the measurements that have been performed. Through this review, we hope to promote the use of DL methods for plant phenotyping tasks and highlight future requirements to optimize uptake, predominantly focusing on the sharing of datasets and generalization of models as well as the caveats associated with utilizing image data to infer physiological function.
Collapse
Affiliation(s)
- Jonathon A Gibbs
- Agriculture and Environmental Sciences, School of Biosciences, University of Nottingham Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Alexandra J Burgess
- Agriculture and Environmental Sciences, School of Biosciences, University of Nottingham Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
2
|
Hunt L, Lhotáková Z, Neuwirthová E, Klem K, Oravec M, Kupková L, Červená L, Epstein HE, Campbell P, Albrechtová J. Leaf Functional Traits in Relation to Species Composition in an Arctic-Alpine Tundra Grassland. PLANTS (BASEL, SWITZERLAND) 2023; 12:1001. [PMID: 36903862 PMCID: PMC10005651 DOI: 10.3390/plants12051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The relict arctic-alpine tundra provides a natural laboratory to study the potential impacts of climate change and anthropogenic disturbance on tundra vegetation. The Nardus stricta-dominated relict tundra grasslands in the Krkonoše Mountains have experienced shifting species dynamics over the past few decades. Changes in species cover of the four competing grasses-Nardus stricta, Calamagrostis villosa, Molinia caerulea, and Deschampsia cespitosa-were successfully detected using orthophotos. Leaf functional traits (anatomy/morphology, element accumulation, leaf pigments, and phenolic compound profiles), were examined in combination with in situ chlorophyll fluorescence in order to shed light on their respective spatial expansions and retreats. Our results suggest a diverse phenolic profile in combination with early leaf expansion and pigment accumulation has aided the expansion of C. villosa, while microhabitats may drive the expansion and decline of D. cespitosa in different areas of the grassland. N. stricta-the dominant species-is retreating, while M. caerulea did not demonstrate significant changes in territory between 2012 and 2018. We propose that the seasonal dynamics of pigment accumulation and canopy formation are important factors when assessing potential "spreader" species and recommend that phenology be taken into account when monitoring grass species using remote sensing.
Collapse
Affiliation(s)
- Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| | - Zuzana Lhotáková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| | - Eva Neuwirthová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic
| | - Michal Oravec
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic
| | - Lucie Kupková
- Department of Applied Geoinformatics and Cartography, Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Lucie Červená
- Department of Applied Geoinformatics and Cartography, Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Howard E. Epstein
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA
| | - Petya Campbell
- Goddard Earth Science Technology and Research (GESTAR) II, University of Maryland Baltimore County, Baltimore, MD 21250, USA
- Biospheric Sciences Laboratory, Building 33, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Jana Albrechtová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| |
Collapse
|
3
|
Pech R, Volná A, Hunt L, Bartas M, Červeň J, Pečinka P, Špunda V, Nezval J. Regulation of Phenolic Compound Production by Light Varying in Spectral Quality and Total Irradiance. Int J Mol Sci 2022; 23:ijms23126533. [PMID: 35742975 PMCID: PMC9223736 DOI: 10.3390/ijms23126533] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Photosynthetically active radiation (PAR) is an important environmental cue inducing the production of many secondary metabolites involved in plant oxidative stress avoidance and tolerance. To examine the complex role of PAR irradiance and specific spectral components on the accumulation of phenolic compounds (PheCs), we acclimated spring barley (Hordeum vulgare) to different spectral qualities (white, blue, green, red) at three irradiances (100, 200, 400 µmol m−2 s−1). We confirmed that blue light irradiance is essential for the accumulation of PheCs in secondary barley leaves (in UV-lacking conditions), which underpins the importance of photoreceptor signals (especially cryptochrome). Increasing blue light irradiance most effectively induced the accumulation of B-dihydroxylated flavonoids, probably due to the significantly enhanced expression of the F3′H gene. These changes in PheC metabolism led to a steeper increase in antioxidant activity than epidermal UV-A shielding in leaf extracts containing PheCs. In addition, we examined the possible role of miRNAs in the complex regulation of gene expression related to PheC biosynthesis.
Collapse
Affiliation(s)
- Radomír Pech
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
| | - Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
| | - Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Praha, Czech Republic;
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Jiří Červeň
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
- Correspondence: (V.Š.); (J.N.)
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
- Correspondence: (V.Š.); (J.N.)
| |
Collapse
|