1
|
Seman-Kamarulzaman AF, Muhammad NAN, Othman NW, Jalinas J, Hassan NI, Rahmat NL, Hassan M. Omics Data Integration of Rhynchophorus Ferrugineus Reveals High-Potential Targeted Pathways for the Development of Pest Control Management. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70039. [PMID: 39930668 DOI: 10.1002/arch.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 05/08/2025]
Abstract
Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Dryophthoridae), commonly known as the red palm weevil (RPW), is a globally significant pest that threatens economically important palm trees. Its cryptic infestation behavior leads to irreversible damage and eventual host plant death. Current control methods using broad-spectrum insecticides are largely ineffective due to resistance development and their adverse effects on nontarget organisms, necessitating novel strategies. This study integrates proteomics and transcriptomics data to explore the molecular landscape of RPW and identify pathways for targeted pest management. A total of 16,954 transcripts and 983 proteins were identified across three developmental stages (larvae, male adults, and female adults), with a notable decline in protein numbers from larvae to adult. Differential expression analysis revealed 7540 proteins varying significantly between developmental stages. Through subtractive analysis, 218 proteins meeting stringent inclusion and exclusion criteria were identified. These proteins underwent pathway enrichment analysis, mapping to 39 enriched pathways (p-value and an FDR of < 0.01). Among these, two pathways involving three key enzymes were highlighted as high-potential targets for developing insect-specific insecticides and diet-specific control strategies. This is the first comprehensive proteomics study analyzing the whole body of RPW across its developmental stages. The findings emphasize critical pathways, their enzyme components, and the regulation of these enzymes, offering novel insights for sustainable and targeted pest management solutions.
Collapse
Affiliation(s)
- Ahmad-Faris Seman-Kamarulzaman
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Nurul Wahida Othman
- Center for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Johari Jalinas
- Center for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Nurul Izzaty Hassan
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Nur Lina Rahmat
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Group of Sustainability of Arab Culture and Islamic Civilization, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Sari DK, Ibrahim N, Herlina N, Arrasyid NK, Dharmajaya R, Rachmawati M, Muhammad N, Salazar-Chang I. The Effects of Red Palm Oil, Koja Bay Leaves, and Passion Fruit Seeds Formulation on Antioxidant Activity, Antihyperlipidemia, BDNF, and Lipase Enzyme Activity on Sprague-Dawley Rats. J Exp Pharmacol 2024; 16:271-284. [PMID: 39262571 PMCID: PMC11389710 DOI: 10.2147/jep.s466494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Background Local wisdom food ingredients in North Sumatra, Indonesia, are a source of phenolics which have antioxidant, antihyperlipidemia, neuronal survival, and growth. Administering products with antioxidant properties can provide a supporting effect in preventing inflammation and neurodegenerative process. Objective The main objective of this study was to analyze the formulation of red palm oil (Elaeis guineensis Jacq), koja bay leaves (Murraya koenigii L Spreng), and passion fruit seeds (Passiflora edulis Sims) to improve lipid profile, antioxidant activity, Brain-Derived Neurotrophic Factor (BDNF), and lipase enzyme activity of Sprague-Dawley rats. Methods This study was an in vivo and pre-post experimental study, starting with analyzing flavonoid of the three extract ingredients, then tested by giving it to rats for 14 days and ending with induction administration of lipopolysaccharide (LPS) for two days. This pre-post study on animals involved 36 rats divided into 6 groups. At the end of the study, termination and examination of malondialdehyde, lipid profile, glucose, BDNF, lipase enzyme activity and histopathological examination were carried out. Results The study results showed that there were significant values in several parameters, which were body weight, LDL, LDL/HDL ratio, BDNF, and lipase enzyme activity especially in the group of rats given LPS and the group with high calories-fat-protein. This study showed that there were significant differences in body weight, LDL levels, and LDL/HDL ratio in each group of rats, especially in the group given the formulation of the three extract ingredients, the significant dose showed in 300mg/kg body weight (p < 0.001). Conclusion The formulation of red palm oil, koja bay leaves, and passion fruit seeds showed significant reduction in LDL levels, LDL/HDL ratio, BDNF, and lipase enzyme activity.
Collapse
Affiliation(s)
- Dina Keumala Sari
- Nutrition Department, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Nurhadi Ibrahim
- Physiology and Biophysics Department, Faculty of Medicine, Universitas Indonesia, Jakarta, Center Java, Indonesia
| | - Nina Herlina
- Pharmacy Department, Faculty of Pharmacy, Universitas Pakuan, Bogor, West Java,Indonesia
- Program Study of Pharmacy, Faculty of Math and Science, Pakuan University, Bogor, West Java, Indonesia
| | - Nurfida Khairina Arrasyid
- Parasitology Department, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Ridha Dharmajaya
- Neurosurgery Department, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Meike Rachmawati
- Anatomical Pathology Department, Faculty of Medicine, Bandung Islamic University, Bandung, Indonesia
| | - Noorzaid Muhammad
- Cluster of Integrative Physiology and Molecular Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Ivan Salazar-Chang
- International Relation Department, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
3
|
Liu L, Yan W, Liu B, Qin W. Molecular Insights into Red Palm Weevil Resistance Mechanisms of Coconut ( Cocos nucifera) Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:1928. [PMID: 39065455 PMCID: PMC11280253 DOI: 10.3390/plants13141928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Red palm weevil (RPW) (Rhynchophorus ferrugineus) threatens most palm species worldwide. This study investigated the molecular responses of coconut (Cocos nucifera) leaves to RPW infestation through metabolomics and transcriptomics analysis. An RPW insect attack model was developed by placing different RPW larval densitiesin coconut plants and measuring the relative chlorophyll content of different leaf positions and physiological indicators of dysfunction after RPW infestation. The metabolomic changes were detected in the leaves of 10, 20, 30, 40, and 50 days after infestation (DAI) using GC-MS. Certain metabolites (glycine, D-pinitol, lauric acid, allylmalonic acid, D-glucaro-1, 4-lactone, protocatechuic acid, alpha, and alpha-trehalose) were found to be possible indicators for distinct stages of infestation using metabolomics analysis. The influence on ABC transporters, glutathione, galactose, and glycolipid metabolism was emphasized by pathway analysis. Differentially expressed genes (DEGs) were identified at 5, 10, 15, and 20 DAI through transcriptomics analysis of infested coconut leaves, with altered expression levels under RPW infestation. The KEGG pathway and GO analysis revealed enrichment in pathways related to metabolism, stress response, and plant-pathogen interactions, shedding light on the intricate mechanisms underlying coconut-RPW interactions. The identified genes may serve as potential markers for tracking RPW infestation progression and could inform strategies for pest control and management.
Collapse
Affiliation(s)
- Li Liu
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (W.Y.); (B.L.); (W.Q.)
| | | | | | | |
Collapse
|
4
|
Hoddle MS, Antony B, El-Shafie HAF, Chamorro ML, Milosavljević I, Löhr B, Faleiro JR. Taxonomy, Biology, Symbionts, Omics, and Management of Rhynchophorus Palm Weevils (Coleoptera: Curculionidae: Dryophthorinae). ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:455-479. [PMID: 38270987 DOI: 10.1146/annurev-ento-013023-121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Palm weevils, Rhynchophorus spp., are destructive pests of native, ornamental, and agricultural palm species. Of the 10 recognized species, two of the most injurious species, Rhynchophorus ferrugineus and Rhynchophorus palmarum, both of which have spread beyond their native range, are the best studied. Due to its greater global spread and damage to edible date industries in the Middle East, R. ferrugineus has received more research interest. Integrated pest management programs utilize traps baited with aggregation pheromone, removal of infested palms, and insecticides. However, weevil control is costly, development of resistance to insecticides is problematic, and program efficacy can be impaired because early detection of infestations is difficult. The genome of R. ferrugineus has been sequenced, and omics research is providing insight into pheromone communication and changes in volatile and metabolism profiles of weevil-infested palms. We outline how such developments could lead to new control strategies and early detection tools.
Collapse
Affiliation(s)
- Mark S Hoddle
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Binu Antony
- Chair of Date Palm Research, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia;
| | - Hamadttu A F El-Shafie
- Sustainable Date Palm Pest Management Research Program, Date Palm Research Center of Excellence, King Faisal University, Hofuf-Al-Ahsa, Saudi Arabia;
| | - M Lourdes Chamorro
- Systematic Entomology Laboratory, Agricultural Research Service, US Department of Agriculture, c/o National Museum of Natural History, Smithsonian Institution, Washington, DC, USA;
| | - Ivan Milosavljević
- Department of Entomology, University of California, Riverside, California, USA; ,
| | | | | |
Collapse
|
5
|
Liu L, Yan W, Liu B. Transcriptome sequencing of Cocos nucifera leaves in response to Rhynchophorus ferrugineus infestation. Front Genet 2023; 14:1115392. [PMID: 36824438 PMCID: PMC9942928 DOI: 10.3389/fgene.2023.1115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Red palm weevil (RPW, Rhynchophorus ferrugineus) is an invasive pest of palms. In China, coconut (Cocos nucifera) production is being significantly affected by the RPW attack. To develop a long-term RPW control strategy, host-plant resistance is the most sustainable option. In this regard, the availability of transcriptome sequencing data from RPW-infected coconut plants can be highly useful. Therefore, the present study assessed coconut leaf physiological responses and transcriptional changes after different days of RPW attack i.e., 5, 10, 15, 20, and 25 days after infestation (DAI). A comparison of physiological data indicated that populations with the higher number of RPW insects i.e., population C (15 males +21 females) and D (20 males +28 females) triggered higher antioxidant enzyme activities. We used this data to study the transcriptomic responses on 5 and 20 DAI. Of the 38,432 detected transcripts, 3,984, 1,981, 3,925, and 2,257 were differentially expressed in CK (control/no RPW)_vs._C (5 DAI), CK_vs._D (5 DAI), CK_vs._C (20 DAI), and CK_vs._D (20 DAI), respectively. These transcripts were enriched in plant-pathogen interaction, phenylpropanoid/flavonoid biosynthesis, amino sugar and nucleotide sugar metabolism, plant hormone signal transduction, mitogen-activated protein kinase, and reactive oxygen scavenging pathway. We discuss these results and present several candidate genes to be manipulated for developing a sustainable strategy to control RPW attack regarding host-plant resistance. Furthermore, these findings provide a basis for developing effective early and late RPW attack detection strategies.
Collapse
Affiliation(s)
- Li Liu
- *Correspondence: Li Liu, ; Wei Yan,
| | - Wei Yan
- *Correspondence: Li Liu, ; Wei Yan,
| | - Bo Liu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|
6
|
Ding C, Song L, Li Y, Shen L, Liu D, Wang F, Lin Z, Yang J. Proteome-wide analysis of lysine 2-hydroxyisobutyrylation in Frankliniella occidentalis. BMC Genomics 2022; 23:621. [PMID: 36038823 PMCID: PMC9422105 DOI: 10.1186/s12864-022-08841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lysine 2-hydroxyisobutyrylation (Khib) is a novel and conserved post-translational modification (PTM). Frankliniella occidentalis are economically important agricultural pests globally and also notorious for vectoring destructive plant viruses. To better study the disease transmission mechanism of F. occidentalis, it is necessary to conduct in-depth analysis of it. So far, no Khib modification of insects has been reported. RESULTS In this study, a proteome-wide analysis of Khib modifications in F. occidentalis was analyzed for the first time through the combination of high performance liquid chromatography fractionation technology and 2-hydroxyisobutyrylated peptide enrichment and other advanced technologies, 4093 Khib sites were identified on 1125 modified proteins. Bioinformatics and functional enrichment analyses showed that Khib-modified proteins were significantly enriched in many cell compartments and pathways, especially related to various cellular components and biological processes, and were more concentrated in ribosomes and proteasome subunits, involved in energy metabolism, protein synthesis and degradation, compared to the other nine species including Japonica rice, Homo sapiens, P. patens, Botrytis, Ustilaginoidea virens, Saccharomyces cerevisiae, T. gondii, C. albicans, and F. oxysporum. And Khib sites on virus-interacting insect proteins were discovered for the first time, such as cyclophilin and endoCP-GN. CONCLUSIONS After three repeated experiments, we found a total of 4093 Khib sites on 1125 proteins. These modified proteins are mainly concentrated in ribosomes and proteasome subunits, and are widely involved in a variety of critical biological activities and metabolic processes of F. occidentalis. In addition, for the first time, Khib modification sites are found on the proteome of F. occidentalis, and these sites could be acted as for the virus interaction, including cyclophilin and endoCP-GN. The global map of 2-hydroxyisobutyrylation in thrips is an invaluable resource to better understand the biological processes of thrips and provide new means for disease control and mitigation of pest damage to crops.
Collapse
Affiliation(s)
- Chengying Ding
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Liyun Song
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Dongyang Liu
- Liangshan State Company of Sichuan Province Tobacco Company, Liangshan, 615000, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhonglong Lin
- Country Yunnan Province Company of China Tobacco Corporation, Kunming, 650001, China.
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
7
|
Alsanea M, Habib S, Khan NF, Alsharekh MF, Islam M, Khan S. A Deep-Learning Model for Real-Time Red Palm Weevil Detection and Localization. J Imaging 2022; 8:jimaging8060170. [PMID: 35735969 PMCID: PMC9224703 DOI: 10.3390/jimaging8060170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background and motivation: Over the last two decades, particularly in the Middle East, Red Palm Weevils (RPW, Rhynchophorus ferruginous) have proved to be the most destructive pest of palm trees across the globe. Problem: The RPW has caused considerable damage to various palm species. The early identification of the RPW is a challenging task for good date production since the identification will prevent palm trees from being affected by the RPW. This is one of the reasons why the use of advanced technology will help in the prevention of the spread of the RPW on palm trees. Many researchers have worked on finding an accurate technique for the identification, localization and classification of the RPW pest. This study aimed to develop a model that can use a deep-learning approach to identify and discriminate between the RPW and other insects living in palm tree habitats using a deep-learning technique. Researchers had not applied deep learning to the classification of red palm weevils previously. Methods: In this study, a region-based convolutional neural network (R-CNN) algorithm was used to detect the location of the RPW in an image by building bounding boxes around the image. A CNN algorithm was applied in order to extract the features to enclose with the bounding boxes—the selection target. In addition, these features were passed through the classification and regression layers to determine the presence of the RPW with a high degree of accuracy and to locate its coordinates. Results: As a result of the developed model, the RPW can be quickly detected with a high accuracy of 100% in infested palm trees at an early stage. In the Al-Qassim region, which has thousands of farms, the model sets the path for deploying an efficient, low-cost RPW detection and classification technology for palm trees.
Collapse
Affiliation(s)
- Majed Alsanea
- Computing Department, Arabeast Colleges, Riyadh 13544, Saudi Arabia;
| | - Shabana Habib
- Department of Information Technology, College of Computer, Qassim University, Buraydah 52571, Saudi Arabia
- Correspondence:
| | - Noreen Fayyaz Khan
- Department of Computer Science, Islamia College University, Peshawar 25120, Pakistan;
| | - Mohammed F. Alsharekh
- Department of Electrical Engineering, Unaizah College of Engineering, Qassim University, Unayzah 52571, Saudi Arabia;
| | - Muhammad Islam
- Department of Electrical Engineering, College of Engineering and Information Technology, Onaizah Colleges, Unayzah 56447, Saudi Arabia; (M.I.); (S.K.)
| | - Sheroz Khan
- Department of Electrical Engineering, College of Engineering and Information Technology, Onaizah Colleges, Unayzah 56447, Saudi Arabia; (M.I.); (S.K.)
| |
Collapse
|