1
|
Zaghloul EAM, Awad ESA, Mohamed IR, El-Hameed AMA, Feng D, Desoky ESM, Algopishi UB, Al Masoudi LM, Elrys AS, Mathew BT, AbuQamar SF, El-Tarabily KA. Co-application of organic amendments and natural biostimulants on plants enhances wheat production and defense system under salt-alkali stress. Sci Rep 2024; 14:29742. [PMID: 39613770 DOI: 10.1038/s41598-024-77651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024] Open
Abstract
Soil alkalinity and salinity are major challenges to wheat production in arid regions. Eco-friendly amendments (organic matter and bio-stimulants) offer promising solutions, but their combined effects are underexplored. This study assessed the effects of organic amendments (vermicompost, compost, and chicken manure) combined with foliar bio-stimulants (licorice root, ginger rhizome, moringa leaf extract (MLE), and potassium humate) on wheat under salt and alkalinity stress. Organic amendments combined with bio-stimulants significantly improved wheat yields by enhancing chlorophyll content, proline levels, photosynthetic pigments, water uptake, and enzyme activities. Vermicompost outperformed compost and chicken manure in improving plant physico-biochemical properties. The combination of vermicompost and MLE was most effective in increasing plant height, leaf area, and photosynthetic rate by 97, 126, and 136%, respectively, while also enhancing catalase, peroxidase, and superoxide dismutase by 65, 97, and 185%, respectively. Consequently, this resulted in 64% increase in straw yield and 27% increase in grain yield compared to controls. Additionally, nutrient uptake (N, P, and K) significantly increased, while sodium uptake decreased. Integrating vermicompost with MLE can significantly enhance wheat productivity under abiotic stress, offering a sustainable solution to improve crop resilience in arid environments. Further research is required to understand the mechanisms and optimize bio-stimulant use in agriculture.
Collapse
Affiliation(s)
- Eman A M Zaghloul
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
- Agriculture Research Centre, Soil and Water and Environment Research Institute, Giza, 12619, Egypt
| | - El-Sayed A Awad
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ibrahim R Mohamed
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Adel M Abd El-Hameed
- Agriculture Research Centre, Soil and Water and Environment Research Institute, Giza, 12619, Egypt
| | - Di Feng
- College of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - El-Sayed M Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Luluah M Al Masoudi
- Department of Biology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
- College of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
| | - Betty T Mathew
- Deprtment of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, UAE
| | - Synan F AbuQamar
- Deprtment of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, UAE.
| | - Khaled A El-Tarabily
- Deprtment of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, UAE
| |
Collapse
|
2
|
Jiao Y, Chen Q, Guo X, Li H, Chen X, Men K, Liu X, Shang X, Gao Y, Zhang L, Yang L, Hou X. Effect of potassium fulvate on continuous tobacco cropping soils and crop growth. FRONTIERS IN PLANT SCIENCE 2024; 15:1457793. [PMID: 39399538 PMCID: PMC11467723 DOI: 10.3389/fpls.2024.1457793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024]
Abstract
Long-term continuous cropping of tobacco causes dysbiosis of soil microbial communities, the imbalance of soil nutrients, and the increase of pathogenic bacteria, which will slow the growth and development of tobacco plants, reduce the production quality, and cause significant losses to tobacco production and tobacco farmers. The application of Potassium fulvic acid can not only provide nutrients, but also inhibit the propagation of pathogens in soil along with raising the amount of organic matter in the soil, which is an effective way to improve soil health. In this experiment, Tobacco variety SNT60 was used as the test material, and 6 treatments were set up by pot test, they were: no fertilisation control group (CK), tobacco special fertiliser (NPK), 3.45 g/kg of potassium fulvic acid fertiliser (T1), 4.65 g/kg of potassium fulvic acid fertiliser (T2), 5.85 g/kg of potassium fulvic acid fertiliser (T3), 7.05 g/kg of potassium fulvic acid fertiliser (T4), Ten replications were set up for each treatment and the soil and fertiliser were mixed and potted before transplanting, 70% as basal fertiliser and 30% as supplementary fertiliser. We also analyzed soil properties, soil microorganisms and agronomic traits of tobacco plants in different treatments to provide reference for mitigating tobacco succession barrier. The test results are as follows: 4.65 g/kg of potassium fulvic acid fertiliser (T2) treatment was the best, soil organic matter, quick nitrogen, phosphorus, potassium, pH, soil catalase, soil sucrase, and soil urease content, compared to CK control, increased by 22.04%, 43.12%, 96.21%, 381.79%, 25.43%, 91.69%, 262.07% and 93.16%. In terms of microbial community, application of potassium fulvic acid fertiliser significantly increased the relative abundance of Ascomycetes, Chlorobacterium, Bacillus, Proteobacteria and Tephritobacterium in the soil. Meanwhile, 4.65 g/kg of potassium fulvic acid fertiliser (T2) promoted the growth of tobacco plants, improved leaf photosynthetic capacity, and enhanced plant disease resistance. This experiment provides practical measures to improve the microbial community of tobacco continuous cropping soils and to reduce the incidence of diseases.
Collapse
Affiliation(s)
- Yingle Jiao
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Qian Chen
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xiaomeng Guo
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Hongliang Li
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xuwei Chen
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Kuifu Men
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xiaochen Liu
- Shandong Nongda Fertiliser Sci. & Tech. Co. Ltd., Tai’an, China
| | - Xianchao Shang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yun Gao
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
3
|
Alsudays IM, Alshammary FH, Alabdallah NM, Alatawi A, Alotaibi MM, Alwutayd KM, Alharbi MM, Alghanem SMS, Alzuaibr FM, Gharib HS, Awad-Allah MMA. Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC PLANT BIOLOGY 2024; 24:191. [PMID: 38486134 PMCID: PMC10941484 DOI: 10.1186/s12870-024-04863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Enriching the soil with organic matter such as humic and fulvic acid to increase its content available nutrients, improves the chemical properties of the soil and increases plant growth as well as grain yield. In this study, we conducted a field experiment using humic acid (HA), fulvic acid (FA) and recommended dose (RDP) of phosphorus fertilizer to treat Hordeum vulgare seedling, in which four concentrations from HA, FA and RDP (0.0 %, 50 %, 75 % and 100%) under saline soil conditions . Moreover, some agronomic traits (e.g. grain yield, straw yield, spikes weight, plant height, spike length and spike weight) in barley seedling after treated with different concentrations from HA, FA and RDP were determined. As such the beneficial effects of these combinations to improve plant growth, N, P, and K uptake, grain yield, and its components under salinity stress were assessed. RESULTS The findings showed that the treatments HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6), improved number of spikes/plant, 1000-grain weight, grain yield/ha, harvest index, the amount of uptake of nitrogen (N), phosphorous (P) and potassium (K) in straw and grain. The increase for grain yield over the control was 64.69, 56.77, 49.83, 49.17, and 44.22% in the first season, and 64.08, 56.63, 49.19, 48.87, and 43.69% in the second season,. Meanwhile, the increase for grain yield when compared to the recommended dose was 22.30, 16.42, 11.27, 10.78, and 7.11% in the first season, and 22.17, 16.63, 11.08, 10.84, and 6.99% in the second season. Therefore, under salinity conditions the best results were obtained when, in addition to phosphate fertilizer, the soil was treated with humic acid or foliar application the plants with fulvic acid under one of the following treatments: HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6). CONCLUSIONS The result of the use of organic amendments was an increase in the tolerance of barley plant to salinity stress, which was evident from the improvement in the different traits that occurred after the treatment using treatments that included organic amendments (humic acid or fulvic acid).
Collapse
Affiliation(s)
| | - Fowzia Hamdan Alshammary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Aishah Alatawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Mashael M Alotaibi
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Maha Mohammed Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Suliman M S Alghanem
- Department of Biology, College of Science, Qassim University, Buraidah, Saudi Arabia
| | | | - Hany S Gharib
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafrelsheikh, 33516, Egypt
| | | |
Collapse
|
4
|
Sansan OC, Ezin V, Ayenan MAT, Chabi IB, Adoukonou-Sagbadja H, Saïdou A, Ahanchede A. Onion ( Allium cepa L.) and Drought: Current Situation and Perspectives. SCIENTIFICA 2024; 2024:6853932. [PMID: 38455126 PMCID: PMC10919983 DOI: 10.1155/2024/6853932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Onions (Allium cepa L.) are the second most commonly produced and consumed vegetable worldwide due to their economic, nutritional, and medicinal benefits. However, drought hinders vegetative growth, lowers yields and bulb quality, reduces photosynthetic activity, and alters the onion plant's metabolism. This review provides a summary of global research on the impact of drought on onions. It specifically seeks to shed light on aspects that remain unclear and generate research avenues. Relevant scientific articles were sourced from the AGORA database, Web of Science (WoS), and search engines such as Google Scholar, Scopus, MEDLINE/PubMed, and SCImago to achieve this objective. A total of 117 scientific articles and documents related to onion and drought were critically examined. The review revealed agromorphological, physiological, biochemical, and genomic studies depicting factors that contribute to drought tolerance in onion genotypes. However, there was little research on the physiological, biochemical, and genetic characteristics of drought tolerance in onions, which need to be deepened to establish its adaptation mechanisms. Understanding the mechanisms of onion response to water stress will contribute to fast-tracking the development of drought-tolerant genotypes and optimize onion production. Future research should be more focused on investigating onion drought tolerance mechanisms and structural and functional genomics and identifying genes responsible for onion drought tolerance.
Collapse
Affiliation(s)
- Oladé Charles Sansan
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Vincent Ezin
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Mathieu Anatole Tele Ayenan
- World Vegetable Center, West and Central Africa Coastal and Humid Regions, IITA-Benin Campus, 08 BP 0932 Tri Postal, Cotonou, Benin
| | - Ifagbémi Bienvenue Chabi
- Laboratory of Human Nutrition and Valorization of Food Bio-ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 03 BP 2819, Benin
| | - Hubert Adoukonou-Sagbadja
- Laboratory of Genetic and Biotechnology, Faculty of Sciences and Technology, University of Abomey-Calavi, Cotonou BP 526, Benin
| | - Aliou Saïdou
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Adam Ahanchede
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| |
Collapse
|
5
|
Rizwan A, Zia-Ur-Rehman M, Rizwan M, Usman M, Anayatullah S, Alharby HF, Bamagoos AA, Alharbi BM, Ali S. Effects of silicon nanoparticles and conventional Si amendments on growth and nutrient accumulation by maize (Zea mays L.) grown in saline-sodic soil. ENVIRONMENTAL RESEARCH 2023; 227:115740. [PMID: 36997044 DOI: 10.1016/j.envres.2023.115740] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/08/2023]
Abstract
Salinity is one of the major abiotic stresses in arid and semiarid climates which threatens the food security of the world. Present study had been designed to assess the efficacy of different abiogenic sources of silicon (Si) to mitigate the salinity stress on maize crop grown on salt-affected soil. Abiogenic sources of Si including silicic acid (SA), sodium silicate (Na-Si), potassium silicate (K-Si), and nanoparticles of silicon (NPs-Si) were applied in saline-sodic soil. Two consecutive maize crops with different seasons were harvested to evaluate the growth response of maize under salinity stress. Post-harvest soil analysis showed a significant decrease in soil electrical conductivity of soil paste extract (ECe) (-23.0%), sodium adsorption ratio (SAR) (-47.7%) and pH of soil saturated paste (pHs) (-9.5%) by comparing with salt-affected control. Results revealed that the maximum root dry weight was recorded in maize1 by the application of NPs-Si (149.3%) and maize2 (88.6%) over control. The maximum shoot dry weight was observed by the application of NPs-Si in maize1 (42.0%) and maize2 (7.4%) by comparing with control treatment. The physiological parameters like chlorophyll contents (52.5%), photosynthetic rate (84.6%), transpiration (100.2%), stomatal conductance (50.5%), and internal CO2 concentration (61.6%) were increased by NPs-Si in the maize1 crop when compared with the control treatment. The application of an abiogenic source (NPs-Si) of Si significantly increased the concentration of phosphorus (P) in roots (223.4%), shoots (22.3%), and cobs (130.3%) of the first maize crop. The current study concluded that the application of NPs-Si and K-Si improved the plant growth by increasing the availability of nutrients like P and potassium (K), physiological attributes, and by reducing the salts stress and cationic ratios in maize after maize crop rotation..
Collapse
Affiliation(s)
- Ali Rizwan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sidra Anayatullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Atif A Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
6
|
Alharbi K, Hafez EM, Omara AED, Osman HS. Mitigating Osmotic Stress and Enhancing Developmental Productivity Processes in Cotton through Integrative Use of Vermicompost and Cyanobacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091872. [PMID: 37176930 PMCID: PMC10180996 DOI: 10.3390/plants12091872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
There is an urgent demand for biostimulant amendments that can sustainably alleviate osmotic stress. However, limited information is available about the integrated application of vermicompost and a cyanobacteria extract on cotton plants. In 2020 and 2021, two field experiments were carried out in which twelve combinations of three irrigation intervals were employed every 14 days (Irrig.14), 21 days (Irrig.21), and 28 days (Irrig.28) along with four amendment treatments (a control, vermicompost, cyanobacteria extract, and combination of vermicompost + cyanobacteria extract) in salt-affected soil. The integrative use of vermicompost and a cyanobacteria extract resulted in an observed improvement in the physicochemical attributes; non-enzymatic antioxidants (free amino acids, proline, total soluble sugars, and phenolics); and antioxidant enzyme activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) and a decrease in the levels of oxidative damage indicators (H2O2 and MDA). Significant augmentation in the content of chlorophyll a and b, carotenoid concentration, relative water content, stomatal conductance, and K+ was also observed. In conjunction with these findings, noticeable decreases in the content of Na+ and hydrogen peroxide (H2O2) and the degree of lipid peroxidation (MDA) proved the efficacy of this technique. Consequently, the highest cotton yield and productivity as well as fiber quality were achieved when vermicompost and a cyanobacteria extract were used together under increasing irrigation intervals in salt-affected soil. In conclusion, the integrated application of vermicompost and a cyanobacteria extract can be helpful for obtaining higher cotton productivity and fiber quality compared with the studied control and the individual applications of the vermicompost or the cyanobacteria extract under increasing irrigation intervals within salt-affected soil. Additionally, it can also help alleviate the harmful impact of these abiotic stresses.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad M Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Hany S Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Hadayek Shubra, Cairo 11241, Egypt
| |
Collapse
|
7
|
Alharbi K, Hafez EM, Omara AED, Nehela Y. Composted Bagasse and/or Cyanobacteria-Based Bio-Stimulants Maintain Barley Growth and Productivity under Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091827. [PMID: 37176885 PMCID: PMC10181477 DOI: 10.3390/plants12091827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Soil and water salinity are among the most fatal environmental challenges that threaten agricultural production worldwide. This study investigated the potential impact(s) of soil amendment using composted bagasse and/or foliar application of cyanobacteria-based bio-stimulants (Arthrospira platensis, also known as Spirulina platensis) to combat the harmful effect(s) of using saline water to irrigate barley plants grown in salt-affected soils during 2020/2021 and 2021/2022. Briefly, the dual application of composted bagasse and cyanobacteria-based bio-stimulants significantly improved the soil properties, buffered the exchangeable sodium percentage (ESP), and enhanced the activity of soil enzymes (urease and dehydrogenase). Moreover, both treatments and their combination notably augmented the water relations of barley plants under salinity stress. All treatments significantly decreased stomatal conductance (gs) and relative water content (RWC) but increased the electrolyte leakage (EL) and balanced the contents of Na+ and K+, and their ratio (K+/Na+) of barley leaves under salinity stress compared with those irrigated with fresh water during the 2020/2021 and 2021/2022 seasons. Additionally, composted bagasse and cyanobacteria-based bio-stimulants diminished the oxidative stress in barley plants under salinity stress by improving the activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX). Consequently, the combination of composted bagasse and cyanobacteria extract resulted in superior yield-related traits such as spike length, number of grains per spike, 1000-grain weight, grain yield, straw yield, and harvest index. Collectively, our findings suggest that the integrative application of composted bagasse and cyanobacteria is promising as a sustainable environmental strategiy that can be used to improve soil properties, plant growth, and productivity of not only barley plants but also maybe other cereal crops irrigated with saline water in salt-affected soil.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Emad M Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
8
|
El-Beltagi HS, Al-Otaibi HH, Parmar A, Ramadan KMA, Lobato AKDS, El-Mogy MM. Application of Potassium Humate and Salicylic Acid to Mitigate Salinity Stress of Common Bean. Life (Basel) 2023; 13:life13020448. [PMID: 36836805 PMCID: PMC9965533 DOI: 10.3390/life13020448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
In the current study, we investigated the effect of potassium humate (Kh) and salicylic acid (SA) in mitigating the salinity stress of common bean plants. Common bean seedlings were treated with 0.2 g/L SA as a foliar application and 0.3 g/L Kh as a soil application individually or in combination. After 7 days of germination, plants were treated with 50 mM NaCl and normal water as a control. Our results indicate that salt treatment reduced the plant growth (fresh and dry shoots and roots), leaf pigments (total chlorophyll and carotenoids), ascorbic acid (AA), glutathione (GSH), and potassium (K) contents. On the contrary, proline content; sodium (Na); hydrogen peroxide (H2O2); superoxide anion (O2•-); and antioxidant enzymes, including catalase (CAT), peroxidase (POX), and superoxide dismutase (SOD), were increased by saline stress. However, applying either individual Kh and SA or their combination stimulated seedling growth under salinity stress by increasing growth parameters, leaf pigment contents, AA, GSH, proline content, K content, and antioxidant enzymes compared with the control. Additionally, Na content, H2O2, and O2•- were reduced by all applications. The application of the Kh (0.3 g/L) + SA (0.2 g/L) combination was more effective than using the individual compounds. In conclusion, applications of Kh + SA can mitigate salt stress and improve the seedling growth of common bean.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Gamma Street, Giza 12613, Egypt
- Correspondence: (H.S.E.-B.); (M.M.E.-M.)
| | - Hala Hazam Al-Otaibi
- Food and Nutrition Science Department, Agricultural Science and Food, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Aditya Parmar
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Allan Klynger da Silva Lobato
- Nucleo de Pesquisa Vegetal Basica e Aplicada, Universidade Federal Rural da Amazonia, Paragominas 68627-450, Para, Brazil
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (H.S.E.-B.); (M.M.E.-M.)
| |
Collapse
|
9
|
Védère C, Lebrun M, Biron P, Planchais S, Bordenave-Jacquemin M, Honvault N, Firmin S, Savouré A, Houben D, Rumpel C. The older, the better: Ageing improves the efficiency of biochar-compost mixture to alleviate drought stress in plant and soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158920. [PMID: 36181810 DOI: 10.1016/j.scitotenv.2022.158920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Due to increased drought frequency following climate change, practices improving water use efficiency and reducing water-stress are needed. The efficiency of organic amendments to improve plant growth conditions under drought is poorly known. Our aim was to investigate if organic amendments can attenuate plant water-stress due to their effect on the plant-soil system and if this effect may increase upon ageing. To this end we determined plant and soil responses to water shortage and organic amendments added to soil. We compared fresh biochar/compost mixtures to similar amendments after ageing in soil. Results indicated that amendment application induced few plant physiological responses under water-stress. The reduction of leaf gas exchange under watershortage was alleviated when plants were grown with biochar and compost amendments: stomatal conductance was least reduced with aged mixture aged mixture (-79 % compared to -87 % in control), similarly to transpiration (-69 % in control and not affected with aged mixture). Belowground biomass production (0.25 times) and nodules formation (6.5 times) were enhanced under water-stress by amendment addition. This effect was improved when grown on soil containing the aged as compared to fresh amendments. Plants grown with aged mixtures also showed reduced leaf proline concentrations (two to five times) compared to fresh mixtures indicating stress reduction. Soil enzyme activities were less affected by water-stress in soil with aged amendments. We conclude that the application of biochar-compost mixtures may be a solution to reduce the effect of water-stress to plants. Our findings revealed that this beneficial effect is expected to increase with aged mixtures, leading to a better water-stress resistance over time. However, while being beneficial for plant growth under water-stress, the use of amendments may not be suited to increase water use efficiency.
Collapse
Affiliation(s)
- Charlotte Védère
- National Institute for Agricultural Research, Ecosys Soil, UMR INRAE-AgroParisTech, 78820 Thiverval-Grignon, France.
| | - Manhattan Lebrun
- National Institute for Agricultural Research, Ecosys Soil, UMR INRAE-AgroParisTech, 78820 Thiverval-Grignon, France.
| | - Philippe Biron
- Institute of Ecology and Environmental Sciences, UMR 7618, CNRS-UPMC-UPEC-INRAE-IRD, Sorbonne University, 75005 Paris, France.
| | - Séverine Planchais
- Institute of Ecology and Environmental Sciences, UMR 7618, CNRS-UPMC-UPEC-INRAE-IRD, Sorbonne University, 75005 Paris, France.
| | - Marianne Bordenave-Jacquemin
- Institute of Ecology and Environmental Sciences, UMR 7618, CNRS-UPMC-UPEC-INRAE-IRD, Sorbonne University, 75005 Paris, France.
| | - Nicolas Honvault
- UniLaSalle, AGHYLE, 60026 Beauvais, France; Ecotron Européen de Montpellier, Univ Montpellier, CNRS, Montferrier sur Lez, France.
| | | | - Arnould Savouré
- Institute of Ecology and Environmental Sciences, UMR 7618, CNRS-UPMC-UPEC-INRAE-IRD, Sorbonne University, 75005 Paris, France.
| | | | - Cornelia Rumpel
- Institute of Ecology and Environmental Sciences, UMR 7618, CNRS-UPMC-UPEC-INRAE-IRD, Sorbonne University, 75005 Paris, France.
| |
Collapse
|
10
|
Alharbi K, Osman HS, Rashwan E, Hafez EM, Omara AED. Stimulating the Growth, Anabolism, Antioxidants, and Yield of Rice Plants Grown under Salt Stress by Combined Application of Bacterial Inoculants and Nano-Silicon. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243431. [PMID: 36559542 PMCID: PMC9787420 DOI: 10.3390/plants11243431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 05/27/2023]
Abstract
The growth and development of rice face many issues, including its exposure to high soil salinity. This issue can be alleviated using new approaches to overwhelm the factors that restrict rice productivity. The objective of our investigation was the usage of the rhizobacteria (Pseudomonas koreensis and Bacillus coagulans) as plant growth-promoting rhizobacteria (PGPRs) and nano-silicon, which could be a positive technology to cope with the problems raised by soil salinity in addition to improvement the morpho-physiological properties, and productivity of two rice varieties (i.e., Giza 177 as salt-sensitive and Giza 179 as salt-tolerant). The findings stated that the application of combined PGPRs and nano-Si resulted in the highest soil enzymes activity (dehydrogenase and urease), root length, leaf area index, photosynthesis pigments, K+ ions, relative water content (RWC), and stomatal conductance (gs) while resulted in the reduction of Na+, electrolyte leakage (EL), and proline content. All these improvements are due to increased antioxidant enzymes activity such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), which decreased hydrogen peroxide (H2O2) and malondialdehyde (MDA) under soil salinity in rice plants compared to the other treatments. Combined application of PGPRs and nano-Si to Giza 177 significantly surpassed Giza 179, which was neither treated with PGPR nor nano-Si in the main yield components (number of grains/panicles, 1000 grain weight, and grain yield as well as nutrient uptake. In conclusion, both PGPRs and nano-Si had stimulating effects that mitigated the salinity-deleterious effects and encouraged plant growth, and, therefore, enhanced the grain yield.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Hadayek Shubra, Cairo 11241, Egypt
| | - Emadeldeen Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| |
Collapse
|
11
|
El-Nogoumy BA, Salem MA, El-Kot GA, Hamden S, Sehsah MD, Makhlouf AH, Nehela Y. Evaluation of the Impacts of Potassium Bicarbonate, Moringa oleifera Seed Extract, and Bacillus subtilis on Sugar Beet Powdery Mildew. PLANTS (BASEL, SWITZERLAND) 2022; 11:3258. [PMID: 36501297 PMCID: PMC9740183 DOI: 10.3390/plants11233258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Powdery mildew disease, caused by Erysiphe betae, is one of the most threatening diseases on sugar beet plants worldwide. It causes a great loss in the root yield, sugar percentage, and quality of produced sugar. In the current study, we aimed to evaluate the susceptibility of 25 sugar beet cultivars to infection with powdery mildew disease under Egyptian conditions. Moreover, we evaluated the impacts of three eco-friendly materials, including potassium bicarbonate (KHCO3; at 5 and 10 g L-1), Moringa oleifera seed extract (25 and 50 g L-1), and the biocontrol agent, Bacillus subtilis (108 cell suspension) against E. betae in two successive seasons 2020 and 2021. Our findings showed that there were significant differences between these 25 cultivars in their susceptibility to the disease under study. Using the detached leaves technique in vitro, B. subtilis showed strong antifungal activity against E. betae. Moreover, both concentrations of KHCO3 and moringa seed extract significantly reduced the disease severity. Under field conditions, tested treatments significantly reduced the severity of powdery mildew disease and prevented E. betae from producing its conidiophores and conidia. Scanning electron microscope examination of treated leaves demonstrated the presence of the decomposition of fungal hyphae, conidiophores, conidia, and the occurrence of plasmolysis to fungal cells and spores on the surface of the leaves. Furthermore, these treatments greatly improved the percent of sucrose and soluble solids content, as well as the enzymatic activity of peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase. It is noteworthy that treatment with moringa seed extract gave the best results, followed by potassium bicarbonate, then B. subtilis cell suspension. Generally, it is recommended to use the substances used in this research to combat powdery mildew to minimize or prevent the use of chemical fungicides harmful to public health and the environment.
Collapse
Affiliation(s)
- Baher A. El-Nogoumy
- Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohamed A. Salem
- Department of Chemistry, Faculty of Science & Arts, King Khalid University, Abha 62529, Saudi Arabia
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11284, Egypt
| | - Gabr A. El-Kot
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Salem Hamden
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohamed D. Sehsah
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Abeer H. Makhlouf
- Faculty of Agriculture, Minufiya University, Shibin El-Kom 32511, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
12
|
Alharbi K, Hafez E, Omara AED, Awadalla A, Nehela Y. Plant Growth Promoting Rhizobacteria and Silica Nanoparticles Stimulate Sugar Beet Resilience to Irrigation with Saline Water in Salt-Affected Soils. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223117. [PMID: 36432846 PMCID: PMC9694940 DOI: 10.3390/plants11223117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 05/27/2023]
Abstract
Combined stressors (high soil salinity and saline water irrigation) severely reduce plant growth and sugar beet yield. Seed inoculation with plant growth-promoting rhizobacteria (PGPR) and/or foliar spraying with silica nanoparticles (Si-NP) is deemed one of the most promising new strategies that have the potential to inhibit abiotic stress. Herein, sugar beet (Beta vulgaris) plants were treated with two PGPR (Pseudomonas koreensis MG209738 and Bacillus coagulans NCAIM B.01123) and/or Si-NP, during two successive seasons 2019/2020 and 2020/2021 to examine the vital role of PGPR, Si-NP, and their combination in improving growth characteristics, and production in sugar beet plants exposed to two watering treatments (fresh water and saline water) in salt-affected soil. The results revealed that combined stressors (high soil salinity and saline water irrigation) increased ion imbalance (K+/Na+ ratio; from 1.54 ± 0.11 to 1.00 ± 0.15) and declined the relative water content (RWC; from 86.76 ± 4.70 to 74.30 ± 3.20%), relative membrane stability index (RMSI), stomatal conductance (gs), and chlorophyll content, which negatively affected on the crop productivity. Nevertheless, the application of combined PGPR and Si-NP decreased oxidative stress indicators (hydrogen peroxide and lipid peroxidation) and sodium ions while increasing activities of superoxide dismutase (SOD; up to 1.9-folds), catalase (CAT; up to 1.4-folds), and peroxidase (POX; up to 2.5-folds) enzymes, and potassium ions resulting in physiological processes, root yield, and sugar yield compared to non-treated controls under combined stressors (high soil salinity and saline water irrigation). It is worth mentioning that the singular application of PGPR improved root length, diameter, and yield greater than Si-NP alone and it was comparable to the combined treatment (PGPR+Si-NP). It was concluded that the combined application of PGPR and Si-NP has valuable impacts on the growth and yield of sugar beet growing under combined stressors of high soil salinity and saline water irrigation.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Emad Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Alaa El-Dien Omara
- Agricultural Research Center, Department of Microbiology, Soils, Water and Environment Research Institute, Giza 12112, Egypt
| | - Abdelmoniem Awadalla
- Department of Agronomy, Faculty of Agriculture and Natural Resources, Aswan University, Aswan 81528, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
13
|
Alharbi K, Rashwan E, Hafez E, Omara AED, Mohamed HH, Alshaal T. Potassium Humate and Plant Growth-Promoting Microbes Jointly Mitigate Water Deficit Stress in Soybean Cultivated in Salt-Affected Soil. PLANTS (BASEL, SWITZERLAND) 2022; 11:3016. [PMID: 36432745 PMCID: PMC9698740 DOI: 10.3390/plants11223016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Lack of high-quality irrigation water and soil salinity are two main environmental factors that affect plant development. When both stressors are combined, the soil becomes sterile and constrains plant productivity. Consequently, two field trials were designed to assess whether plant growth-promoting microbes (PGPMs; Bradyrhizobium japonicum (USDA 110) and Trichoderma harzianum) and potassium humate (K-humate) can stimulate soybean growth, productivity, and seed quality under two different watering regimes as follows: (i) well-watered (WW), where plants were irrigated at 12-day intervals (recommended), and (ii) water stress (WS), where plants were irrigated at the 18-day intervals in salt-affected soil during 2020 and 2021 seasons. Results revealed that coupled application of PGPMs and K-humate resulted in a substantial improvement in K+ levels in the leaves compared to Na+ levels, which has a direct positive impact on an enhancement in the antioxidants defense system (CAT, POX, SOD), which caused the decline of the oxidative stress indicators (H2O2, MDA, and EL%) as well as proline content under water stress in salt-affected soil. Hence, a significant increase in root length, nodule weight, soybean relative water content (RWC), stomatal conductance, photosynthetic pigments, net photosynthetic rate, soluble protein, seed carbohydrate content as well as the number of pods plant-1 and seed yield was reported. In conclusion, the combined application of PGPMs and K-humate might be recommended to maximize the soybean growth and productivity under harsh growth conditions (e.g., water stress and soil salinity).
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Emadeldeen Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Emad Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Alaa El-Dein Omara
- Agricultural Research Center, Microbiology, Soils, Water Environment Research Institute, Giza 12112, Egypt
| | - Hossam Hussein Mohamed
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 13625, Egypt
| | - Tarek Alshaal
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Department of Applied Plant Biology, Institute of Crop Sciences, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| |
Collapse
|
14
|
Nano-Restoration for Sustaining Soil Fertility: A Pictorial and Diagrammatic Review Article. PLANTS 2022; 11:plants11182392. [PMID: 36145792 PMCID: PMC9504293 DOI: 10.3390/plants11182392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Soil is a real treasure that humans cannot live without. Therefore, it is very important to sustain and conserve soils to guarantee food, fiber, fuel, and other human necessities. Healthy or high-quality soils that include adequate fertility, diverse ecosystems, and good physical properties are important to allow soil to produce healthy food in support of human health. When a soil suffers from degradation, the soil’s productivity decreases. Soil restoration refers to the reversal of degradational processes. This study is a pictorial review on the nano-restoration of soil to return its fertility. Restoring soil fertility for zero hunger and restoration of degraded soils are also discussed. Sustainable production of nanoparticles using plants and microbes is part of the process of soil nano-restoration. The nexus of nanoparticle–plant–microbe (NPM) is a crucial issue for soil fertility. This nexus itself has several internal interactions or relationships, which control the bioavailability of nutrients, agrochemicals, or pollutants for cultivated plants. The NPM nexus is also controlled by many factors that are related to soil fertility and its restoration. This is the first photographic review on nano-restoration to return and sustain soil fertility. However, several additional open questions need to be answered and will be discussed in this work.
Collapse
|
15
|
Application of Silica Nanoparticles in Combination with Two Bacterial Strains Improves the Growth, Antioxidant Capacity and Production of Barley Irrigated with Saline Water in Salt-Affected Soil. PLANTS 2022; 11:plants11152026. [PMID: 35956503 PMCID: PMC9370161 DOI: 10.3390/plants11152026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 01/24/2023]
Abstract
Exploitation of low-quality water or irrigation of field crops with saline water in salt-affected soil is a critical worldwide challenge that rigorously influences agricultural productivity and sustainability, especially in arid and semiarid zones with limited freshwater resources. Therefore, we investigated a synergistic amendment strategy for salt-affected soil using a singular and combined application of plant growth-promoting rhizobacteria (PGPR at 950 g ha−1; Azotobacter chroococcum SARS 10 and Pseudomonas koreensis MG209738) and silica nanoparticles (SiNPs) at 500 mg L−1 to mitigate the detrimental impacts of irrigation with saline water on the growth, physiology, and productivity of barley (Hordum vulgare L.), along with soil attributes and nutrient uptake during 2019/2020 and 2020/2021. Our field trials showed that the combined application of PGPR and SiNPs significantly improved the soil physicochemical properties, mainly by reducing the soil exchangeable sodium percentage. Additionally, it considerably enhanced the microbiological counts (i.e., bacteria, azotobacter, and bacillus) and soil enzyme activity (i.e., urease and dehydrogenase) in both growing seasons compared with the control. The combined application of PGPR and SiNPs alleviated the detrimental impacts of saline water on barley plants grown in salt-affected soil compared to the single application of PGPR or SiNPs. The marked improvement was due to the combined application of PGPR and SiNPs, which enhanced the physiological properties (e.g., relative chlorophyll content (SPAD), relative water content (RWC), stomatal conductance, and K/Na ratio), enzyme activity (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX)), and yield and yield-related traits and nutrient uptake (N, P, and K) of barley plants. Moreover, the Na+ content, hydrogen peroxide (H2O2) content, lipid peroxidation (MDA), electrolyte leakage (EL), and proline content were reduced upon the application of PGPR + SiNPs. These results could be important information for cultivating barley and other cereal crops in salt-affected soil under irrigation with saline water.
Collapse
|
16
|
El-Hashash EF, Abou El-Enin MM, Abd El-Mageed TA, Attia MAEH, El-Saadony MT, El-Tarabily KA, Shaaban A. Bread Wheat Productivity in Response to Humic Acid Supply and Supplementary Irrigation Mode in Three Northwestern Coastal Sites of Egypt. AGRONOMY 2022; 12:1499. [DOI: 10.3390/agronomy12071499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Drought stress is a major factor limiting wheat crop production worldwide. The application of humic acid (HA) and the selection of the appropriate genotype in the suitable site is one of the most important methods of tolerance of wheat plants to drought-stress conditions. The aim of this study was achieved using a three-way ANOVA, the stress tolerance index (STI), the Pearson correlation coefficient (rp), and principal component analysis (PCA). Three field experiments in three sites (Al-Qasr, El-Neguilla, and Abo Kwela) during the 2019/21 and 2020/21 seasons were conducted, entailing one Egyptian bread wheat variety (Sakha 94) with three HA rates (0, 30, and 60 kg ha−1) under normal and drought-stress conditions (supplemental irrigation). According to the ANOVA, the sites, supplemental irrigation, HA rates, and their first- and second-order interactions the grain yield and most traits evaluated (p ≤ 0.05 or 0.01) were significantly influenced in both seasons. Drought stress drastically reduced all traits registered in all factors studied compared with normal conditions. The wheat plants at the Al-Qasr site in both seasons showed significantly increased grain yield and most traits compared with that of the other sites under normal and drought-stress conditions. HA significantly promoted all studied traits under drought stress, and was highest when applying 60 kg HA ha−1, regardless of the site. The greatest grain yield and most traits monitored were observed in wheat plants fertilized with 60 kg HA ha−1 at the Al-Qasr site in both seasons under both conditions. Grain yield significantly (p ≤ 0.05 or 0.01) correlated with water and precipitation use efficiency as well as the most studied traits under normal and drought-stress conditions. The results of STI, rp, and PCA from the current study could be useful and could be used as a suitable method for studying drought-tolerance mechanisms to improve wheat productivity. Based on the results of statistical methods used in this study, we recommend the application of 60 kg HA ha−1 to improve wheat productivity under drought conditions along the north-western coast of Egypt.
Collapse
|
17
|
Omara AED, Hafez EM, Osman HS, Rashwan E, El-Said MAA, Alharbi K, Abd El-Moneim D, Gowayed SM. Collaborative Impact of Compost and Beneficial Rhizobacteria on Soil Properties, Physiological Attributes, and Productivity of Wheat Subjected to Deficit Irrigation in Salt Affected Soil. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070877. [PMID: 35406858 PMCID: PMC9002696 DOI: 10.3390/plants11070877] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 05/27/2023]
Abstract
Plant growth and crop productivity under unfavorable environmental challenges require a unique strategy to scavenge the severely negative impacts of these challenges such as soil salinity and water stress. Compost and plant growth-promoting rhizobacteria (PGPR) have many beneficial impacts, particularly in plants exposed to different types of stress. Therefore, a field experiment during two successive seasons was conducted to investigate the impact of compost and PGPR either separately or in a combination on exchangeable sodium percentage (ESP), soil enzymes (urease and dehydrogenase), wheat physiology, antioxidant defense system, growth, and productivity under deficient irrigation and soil salinity conditions. Our findings showed that exposure of wheat plants to deficit irrigation in salt-affected soil inhibited wheat growth and development, and eventually reduced crop productivity. However, these injurious impacts were diminished after soil amendment using the combined application of compost and PGPR. This combined application enhanced soil urease and dehydrogenase, ion selectivity, chlorophylls, carotenoids, stomatal conductance, and the relative water content (RWC) whilst reducing ESP, proline content, which eventually increased the yield-related traits of wheat plants under deficient irrigation conditions. Moreover, the coupled application of compost and PGPR reduced the uptake of Na and resulted in an increment in superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) activities that lessened oxidative damage and improved the nutrient uptake (N, P, and K) of deficiently irrigated wheat plants under soil salinity. It was concluded that to protect wheat plants from environmental stressors, such as water stress and soil salinity, co-application of compost with PGPR was found to be effective.
Collapse
Affiliation(s)
- Alaa El-Dein Omara
- Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Hadayek Shubra, Cairo 11241, Egypt
| | - Emadeldeen Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Mohamed A. A. El-Said
- Department of Agronomy, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt;
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt;
| | - Salah M. Gowayed
- Department of Botany, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
18
|
El-Shamy MA, Alshaal T, Mohamed HH, Rady AMS, Hafez EM, Alsohim AS, Abd El-Moneim D. Quinoa Response to Application of Phosphogypsum and Plant Growth-Promoting Rhizobacteria under Water Stress Associated with Salt-Affected Soil. PLANTS 2022; 11:plants11070872. [PMID: 35406852 PMCID: PMC9003221 DOI: 10.3390/plants11070872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/24/2023]
Abstract
The aim of the study was to estimate the impact of soil amendments (i.e., phosphogypsum and plant growth-promoting rhizobacteria (PGPR)) separately or their combination on exchangeable sodium percentage (ESP), soil enzymes’ activity (urease and dehydrogenase), pigment content, relative water content (RWC), antioxidant enzymatic activity, oxidative stress, productivity, and quality of quinoa under deficient irrigation conditions in two field experiments during the 2019–2020 and 2020–2021 seasons under salt-affected soil. Results revealed that ESP, soil urease activity, soil dehydrogenase activity, leaf chlorophyll a, b, and carotenoids, leaf K content, RWC, SOD (superoxide dismutase), CAT (catalase), and POD (peroxidase) activities were declined, resulting in overproduction of leaf Na content, proline content, and oxidative stress indicators (H2O2, malondialdehyde (MDA) and electrolyte leakage) under water stress and soil salinity, which negatively influence yield-related traits, productivity, and seed quality of quinoa. However, amendment of salt-affected soil with combined phosphogypsum and seed inoculation with PGPR under deficient irrigation conditions was more effective than singular application and control plots in ameliorating the harmful effects of water stress and soil salinity. Additionally, combined application limited Na uptake in leaves and increased K uptake and leaf chlorophyll a, b, and carotenoids as well as improved SOD, CAT, and POD activities to ameliorate oxidative stress indicators (H2O2, MDA, and electrolyte leakage), which eventually positively reflected on productivity and quality in quinoa. We conclude that the potential utilization of phosphogypsum and PGPR are very promising as sustainable eco-friendly strategies to improve quinoa tolerance to water stress under soil salinity.
Collapse
Affiliation(s)
- Moshira A. El-Shamy
- Crop Intensification Research Department, Field Crops Research Institute, Giza 12511, Egypt;
| | - Tarek Alshaal
- Department of Applied Plant Biology, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
- Soil and Water Department, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh 33516, Egypt
| | - Hossam Hussein Mohamed
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 11782, Egypt;
| | - Asmaa M. S. Rady
- Crop Science Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Correspondence: (E.M.H.); (A.S.A.)
| | - Abdullah S. Alsohim
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Burydah 51452, Saudi Arabia
- Correspondence: (E.M.H.); (A.S.A.)
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt;
| |
Collapse
|