1
|
Krzemińska J, Kapusta-Duch J, Smoleń S, Kowalska I, Słupski J, Skoczeń-Słupska R, Krawczyk K, Waśniowska J, Koronowicz A. Iodine enriched kale (Brassica oleracea var. sabellica L.)-The influence of heat treatments on its iodine content, basic composition and antioxidative properties. PLoS One 2024; 19:e0304005. [PMID: 38935598 PMCID: PMC11210757 DOI: 10.1371/journal.pone.0304005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/03/2024] [Indexed: 06/29/2024] Open
Abstract
Iodine deficiency in the diet globally continues to be a cause of many diseases and disabilities. Kale is a vegetable that has health-promoting potential because of many nutrients and bioactive compounds (ascorbic acid, carotenoids, glucosinolates and phenolic compounds). Brassica vegetables, including kale, have been strongly recommended as dietary adjuvants for improving health. The nutrient and health-promoting compounds in kale are significantly affected by thermal treatments. Changes in phytochemicals upon such activities may result from two contrary phenomena: breakdown of nutrients and bioactive compounds and a matrix softening effect, which increases the extractability of phytochemicals, which may be especially significant in the case of iodine-fortified kale. This study investigated changes of basic composition, iodine, vitamin C, total carotenoids and polyphenols contents as well as antioxidant activity caused by steaming, blanching and boiling processes in the levels of two cultivars of kale (green and red) non-biofortified and biofortified via the application to nutrient solutions in hydroponic of two iodoquinolines [8-hydroxy-7-iodo-5-quinolinesulfonic acid (8-OH-7-I-5QSA) and 5-chloro-7-iodo-8-quinoline (5-Cl-7-I-8-Q)] and KIO3. Thermal processes generally significantly reduced the content of the components in question and the antioxidant activity of kale, regardless of cultivar and enrichment. It was observed that the red cultivar of kale had a greater ability to accumulate and reduce iodine losses during the culinary processes. 8-hydroxy-7-iodo-5-quinolinesulfonic acid showed a protective effect against the treatments used, compared to other enrichments, thus contributing to the preservation of high iodine content.
Collapse
Affiliation(s)
- Joanna Krzemińska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Joanna Kapusta-Duch
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Sylwester Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Iwona Kowalska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Jacek Słupski
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Radosława Skoczeń-Słupska
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Katarzyna Krawczyk
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Justyna Waśniowska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
2
|
Šutković J, Van Wieren A, Peljto E, Yildirim A. Phytoremediation potential of Brassica oleracea varieties through cadmium tolerance gene expression analysis. J Genet Eng Biotechnol 2024; 22:100381. [PMID: 38797549 PMCID: PMC11103569 DOI: 10.1016/j.jgeb.2024.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Brassica oleracea var. acephala, commonly referred to as kale, is a well-documented plant species, a food crop but well recognized for its capacity to endure and manage the accumulation of heavy metals. In this research, the phytoremediation potential of kale was evaluated based on cadmium intake, utilizing three distinct kale varieties originating from Bosnia and Herzegovina. All kales were grown in controlled conditions, with different concentrations of cadmium (Cd), a known strong pollutant found in small concentrations in soil under normal environmental conditions. After the root length analysis and cadmium atomic spectrometry, we utilized quantitative PCR (qPCR) and cycle threshold (Ct) values to calculate the expression levels of five genes associated with Cd heavy metal response: Mitogen-activated protein kinase 2 (MAPK2), Farnesylated protein 26 and 27 (HIPP26, HIPP27), Natural resistance-associated macrophage protein 6 (RAMP6), and Heavy metal accumulator 2 (HMA2). RESULTS The atomic reader's analysis of rising cadmium concentrations revealed a proportional decline in the length of kale roots. The gene expression levels corresponded to cadmium stress differently among varieties, but mostly showing notable up-regulations under Cd stress, indicating the strong Cd presence within the plant. CONCLUSIONS This study demonstrated differences in gene expression behavior among three B. oleracea varieties from Bosnia and Herzegovina, indicating and filtering the Cd-resistant kale, and kale varieties suitable for phytoremediation. For the first time, such a study was conducted on kale varieties from Bosnia and Herzegovina, analyzing the impact of cadmium on the growth and resilience of these species.
Collapse
Affiliation(s)
- Jasmin Šutković
- International University of Sarajevo, Faculty of Engineering and Natural Sciences, Bosnia and Herzegovina.
| | - Annissa Van Wieren
- International University of Sarajevo, Faculty of Engineering and Natural Sciences, Bosnia and Herzegovina
| | - Ensar Peljto
- International University of Sarajevo, Faculty of Engineering and Natural Sciences, Bosnia and Herzegovina
| | - Ahmet Yildirim
- International University of Sarajevo, Faculty of Engineering and Natural Sciences, Bosnia and Herzegovina
| |
Collapse
|
3
|
Yilmaz‐Ersan L, Ozcan T, Usta‐Gorgun B, Ciniviz M, Keser G, Bengu I, Keser RA. Bioaccessibility and antioxidant capacity of kefir-based smoothies fortified with kale and spinach after in vitro gastrointestinal digestion. Food Sci Nutr 2024; 12:2153-2165. [PMID: 38455206 PMCID: PMC10916544 DOI: 10.1002/fsn3.3917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 03/09/2024] Open
Abstract
The kefir-based smoothies with kale and spinach were designed as a ready-to-drink and innovative functional snack. Microbiological, physicochemical, as well as pre- and postgastrointestinal total antioxidant capacity (TAC; CUPRAC, DPPH, and FRAP) analyses were conducted. It was determined that the kefir-based smoothies with vegetables had higher ash, carbohydrate, and dietary fiber values. Fructose and glucose contents of smoothy with kale were high, while smoothy with spinach included high sucrose and maltose. The microbiology results revealed that kefir-based vegetable smoothies had minimum Lactobacillaceae viability (>log 7 cfu g-1) for the required functional effect after 14-day storage. Moreover, the addition of kale significantly increased (p < .01) the level of initial TAC (CUPRAC, DPPH, and FRAP) and total phenolic content (TPC) values. After in vitro gastric digestion analysis, smoothie with spinach demonstrated higher TAC and TPC values and the control sample had higher TAC and TPC values compared with a predigestion step. It was found that in vitro intestinal DPPH values were higher for the sample with spinach samples, while the sample with kale had the highest FRAP values. It was also found that the bioaccessibility indexes of plain kefir were determined to be the highest in both in vitro gastric and intestinal procedures. The present study provided novel insights into the in vitro digestion properties of kefir fortified with vegetables. Nevertheless, further studies are needed to identify the functional properties of the milk and plant matrices mixture using in vitro and in vivo trials.
Collapse
Affiliation(s)
- Lutfiye Yilmaz‐Ersan
- Faculty of Agriculture, Department of Food EngineeringBursa Uludag UniversityBursaTurkey
| | - Tulay Ozcan
- Faculty of Agriculture, Department of Food EngineeringBursa Uludag UniversityBursaTurkey
| | - Buse Usta‐Gorgun
- Graduate School of Natural and Applied SciencesBursa Uludag UniversityBursaTurkey
| | - Melike Ciniviz
- Graduate School of Natural and Applied SciencesBursa Uludag UniversityBursaTurkey
| | - Gokce Keser
- Graduate School of Natural and Applied SciencesBursa Uludag UniversityBursaTurkey
| | - Ilay Bengu
- Graduate School of Natural and Applied SciencesBursa Uludag UniversityBursaTurkey
| | - Raziye Asli Keser
- Graduate School of Natural and Applied SciencesBursa Uludag UniversityBursaTurkey
| |
Collapse
|
4
|
Muthusamy M, Lee SI. Abiotic stress-induced secondary metabolite production in Brassica: opportunities and challenges. FRONTIERS IN PLANT SCIENCE 2024; 14:1323085. [PMID: 38239210 PMCID: PMC10794482 DOI: 10.3389/fpls.2023.1323085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024]
Abstract
Over the decades, extensive research efforts have been undertaken to understand how secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Understanding the genetic basis of stress-response metabolite biosynthesis is crucial for sustainable agriculture production amidst frequent occurrence of climatic anomalies. Although it is known that environmental factors influence phytochemical profiles and their content, studies of plant compounds in relation to stress mitigation are only emerging and largely hindered by phytochemical diversities and technical shortcomings in measurement techniques. Despite these challenges, considerable success has been achieved in profiling of secondary metabolites such as glucosinolates, flavonoids, carotenoids, phenolic acids and alkaloids. In this study, we aimed to understand the roles of glucosinolates, flavonoids, carotenoids, phenolic acids and alkaloids in relation to their abiotic stress response, with a focus on the developing of stress-resilient crops. The focal genus is the Brassica since it (i) possesses variety of specialized phytochemicals that are important for its plant defense against major abiotic stresses, and (ii) hosts many economically important crops that are sensitive to adverse growth conditions. We summarize that augmented levels of specialized metabolites in Brassica primarily function as stress mitigators against oxidative stress, which is a secondary stressor in many abiotic stresses. Furthermore, it is clear that functional characterization of stress-response metabolites or their genetic pathways describing biosynthesis is essential for developing stress-resilient Brassica crops.
Collapse
Affiliation(s)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
5
|
Hosseini A, Mobasheri L, Rakhshandeh H, Rahimi VB, Najafi Z, Askari VR. Edible Herbal Medicines as an Alternative to Common Medication for Sleep Disorders: A Review Article. Curr Neuropharmacol 2024; 22:1205-1232. [PMID: 37345244 PMCID: PMC10964091 DOI: 10.2174/1570159x21666230621143944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 06/23/2023] Open
Abstract
Insomnia is repeated difficulty in falling asleep, maintaining sleep, or experiencing lowquality sleep, resulting in some form of daytime disturbance. Sleeping disorders cause daytime fatigue, mental confusion, and over-sensitivity due to insufficient recovery from a sound sleep. There are some drugs, such as benzodiazepines and anti-histaminic agents, which help to sleep induction and insomnia cure. However, the prolonged administration is unsuitable because of tolerance and dependence. Therefore, the researchers attempt to find new medicines with lesser adverse effects. Natural products have always been good sources for developing new therapeutics for managing diseases such as cancer, cardiovascular disease, diabetes, insomnia, and liver and renal problems. Ample research has justified the acceptable reason and relevance of the use of these herbs in the treatment of insomnia. It is worth noting that in this study, we looked into various Persian herbs in a clinical trial and in vivo to treat insomnia, such as Artemisia annua, Salvia reuterana, Viola tricolor, Passiflora incarnata, lettuce, and Capparis spinose. According to research, herb extracts and fractions, particularly n-butanol fractions with non-polar agents, impact the benzodiazepine receptors and have hypnotic properties. Also, alkaloids, glycosides, flavonoids, saponins, and tannins in practically every plant are mentioned making them the popular natural compounds to help with sleep disorders and promote calmness.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad Iran
| | - Leila Mobasheri
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Najafi
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Khalid W, Iqra, Afzal F, Rahim MA, Abdul Rehman A, Faiz ul Rasul H, Arshad MS, Ambreen S, Zubair M, Safdar S, Al-Farga A, Refai M. Industrial applications of kale ( Brassica oleracea var. sabellica) as a functional ingredient: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2168011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Iqra
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat, Pakistan
| | - Fareed Afzal
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Abdul Rahim
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Asma Abdul Rehman
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Punjab, Pakistan
| | - Hadiqa Faiz ul Rasul
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Punjab, Pakistan
| | - Muhammad Sajid Arshad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Saadia Ambreen
- University institute of Food Science and Technology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Zubair
- Department of Home Economics, Government College University Faisalabad, Punjab, Pakistan
| | - Saira Safdar
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ammar Al-Farga
- Department of Food Science, Faculty of Agriculture, Ibb University, Ibb, Yemen
| | - Mohammed Refai
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Rachwał K, Niedźwiedź I, Waśko A, Laskowski T, Szczeblewski P, Kukula-Koch W, Polak-Berecka M. Red Kale ( Brassica oleracea L. ssp. acephala L. var. sabellica) Induces Apoptosis in Human Colorectal Cancer Cells In Vitro. Molecules 2023; 28:6938. [PMID: 37836781 PMCID: PMC10574217 DOI: 10.3390/molecules28196938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
This article presents the results of studies investigating the effect of red kale (Brassica oleracea L. ssp. acephala L. var. sabellica) extract on cancer cells (HT-29). The cytotoxicity of the red kale extract was assessed using MTT and LDH assays, while qRT-PCR was employed to analyze the expression of genes associated with the p53 signaling pathway to elucidate the effect of the extract on cancer cells. Furthermore, HPLC-ESI-QTOF-MS/MS was applied to identify bioactive compounds present in red kale. The obtained results indicated that red kale extract reduced the viability and suppressed the proliferation of HT-29 cells (the IC50 value of 60.8 µg/mL). Additionally, mRNA expression analysis revealed significant upregulation of several genes, i.e., casp9, mapk10, mapk11, fas, kat2 b, and ubd, suggesting the induction of cell apoptosis through the caspase-dependent pathway. Interestingly, the study revealed a decrease in the expression of genes including cdk2 and cdk4 encoding cell cycle-related proteins, which may lead to cell cycle arrest. Furthermore, the study identified certain bioactive compounds, such as sinigrin, spirostanol, hesperetin and usambarensine, which could potentially contribute to the apoptotic effect of red kale extracts. However, further investigations are necessary to elucidate the specific role of these individual compounds in the anti-cancer process.
Collapse
Affiliation(s)
- Kamila Rachwał
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (I.N.); (A.W.); (M.P.-B.)
| | - Iwona Niedźwiedź
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (I.N.); (A.W.); (M.P.-B.)
| | - Adam Waśko
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (I.N.); (A.W.); (M.P.-B.)
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (T.L.); (P.S.)
| | - Paweł Szczeblewski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (T.L.); (P.S.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland;
| | - Magdalena Polak-Berecka
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (I.N.); (A.W.); (M.P.-B.)
| |
Collapse
|
8
|
Ortega-Hernández E, Camero-Maldonado AV, Acevedo-Pacheco L, Jacobo-Velázquez DA, Antunes-Ricardo M. Immunomodulatory and Antioxidant Effects of Spray-Dried Encapsulated Kale Sprouts after In Vitro Gastrointestinal Digestion. Foods 2023; 12:foods12112149. [PMID: 37297394 DOI: 10.3390/foods12112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The health-related compounds present in kale are vulnerable to the digestive process or storage conditions. Encapsulation has become an alternative for their protection and takes advantage of their biological activity. In this study, 7-day-old Red Russian kale sprouts grown in the presence of selenium (Se) and sulfur (S) were spray-dried with maltodextrin to assess their capacity to protect kale sprout phytochemicals from degradation during the digestion process. Analyses were conducted on the encapsulation efficiency, particle morphology, and storage stability. Mouse macrophages (Raw 264.7) and human intestinal cells (Caco-2) were used to assess the effect of the intestinal-digested fraction of the encapsulated kale sprout extracts on the cellular antioxidant capacity, the production of nitric oxide (NOx), and the concentrations of different cytokines as indicators of the immunological response. The highest encapsulation efficiency was observed in capsules with a 50:50 proportion of the hydroalcoholic extract of kale and maltodextrin. Gastrointestinal digestion affected compounds' content in encapsulated and non-encapsulated kale sprouts. Spray-dried encapsulation reduced the phytochemicals' degradation during storage, and the kale sprouts germinated with S and Se showed less degradation of lutein (35.6%, 28.2%), glucosinolates (15.4%, 18.9%), and phenolic compounds (20.3%, 25.7%), compared to non-encapsulated ones, respectively. S-encapsulates exerted the highest cellular antioxidant activity (94.2%) and immunomodulatory activity by stimulating IL-10 production (88.9%) and COX-2 (84.1%) and NOx (92.2%) inhibition. Thus, encapsulation is an effective method to improve kale sprout phytochemicals' stability and bioactivity during storage and metabolism.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Ana Victoria Camero-Maldonado
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Ignacio Morones Prieto 3000, Monterrey 64710, Mexico
| | - Laura Acevedo-Pacheco
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, Zapopan 45201, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan 45201, Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| |
Collapse
|
9
|
'Superfoods': Reliability of the Information for Consumers Available on the Web. Foods 2023; 12:foods12030546. [PMID: 36766074 PMCID: PMC9914617 DOI: 10.3390/foods12030546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The term 'superfoods', used frequently with marketing purposes, is usually associated with foodstuffs with beneficial health properties. 'Superfoods' appears in many information sources, including digital media. The information they provide is easily accessible for consumers through Internet search engines. The objective of this work is to investigate the data that web pages offer to consumers and their accuracy according to current scientific knowledge. The two main search engines were utilized for English language websites search, introducing the term 'superfoods'. In total, 124 search results were found. After applying the selection criteria, 45 web pages were studied. A total of 136 foods were considered as 'superfoods' by sites; 10 of them (kale, spinach, salmon, blueberries, avocado, chia, walnuts, beans, fermented milks and garlic) were mentioned on at least 15 sites. Nutritional and healthy properties displayed on sites were compared to scientific information. In conclusion, websites present the information in a very simplified manner and it is generally not wrong. However, they should offer to consumers comprehensible information without raising false expectations regarding health benefits. In any case, 'superfoods' consumption can have salutary effects as part of a balanced diet.
Collapse
|
10
|
Ortega-Hernández E, Antunes-Ricardo M, Cisneros-Zevallos L, Jacobo-Velázquez DA. Selenium, Sulfur, and Methyl Jasmonate Treatments Improve the Accumulation of Lutein and Glucosinolates in Kale Sprouts. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091271. [PMID: 35567272 PMCID: PMC9100039 DOI: 10.3390/plants11091271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/12/2023]
Abstract
Kale sprouts contain health-promoting compounds that could be increased by applying plant nutrients or exogenous phytohormones during pre-harvest. The effects of selenium (Se), sulfur (S), and methyl jasmonate (MeJA) on lutein, glucosinolate, and phenolic accumulation were assessed in kale sprouts. Red Russian and Dwarf Green kale were chamber-grown using different treatment concentrations of Se (10, 20, 40 mg/L), S (30, 60, 120 mg/L), and MeJA (25, 50, 100 µM). Sprouts were harvested every 24 h for 7 days to identify and quantify phytochemicals. The highest lutein accumulation occurred 7 days after S 120 mg/L (178%) and Se 40 mg/L (199%) treatments in Red Russian and Dwarf Green kale sprouts, respectively. MeJA treatment decreased the level of most phenolic levels, except for kaempferol and quercetin, where increases were higher than 70% for both varieties when treated with MeJA 25 µM. The most effective treatment for glucosinolate accumulation was S 120 mg/L in the Red Russian kale variety at 7 days of germination, increasing glucoraphanin (262.4%), glucoerucin (510.8%), 4-methoxy-glucobrassicin (430.7%), and glucoiberin (1150%). Results show that kales treated with Se, S, and MeJA could be used as a functional food for fresh consumption or as raw materials for different industrial applications.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico;
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan 45201, Jal, Mexico
| |
Collapse
|