1
|
Rodrigues FFG, de Carvalho NKG, da Silva MP, da Silva MAP, de Alcântara BM, da Costa JGM. Allelopathic Effect of Cynophalla flexuosa Essential Oil on the Germination and Growth of Calotropis procera. Chem Biodivers 2025:e202500152. [PMID: 40192421 DOI: 10.1002/cbdv.202500152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/11/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
This work reports the evaluation of allelochemicals present in the essential oil of Cynophalla flexuosa under the germination and growth of Calotropis procera. The chemical composition was determined by gas chromatography coupled to mass spectrometry (GC/MS). The allelopathic potential of the oil was evaluated in C. procera. The data were subjected to a one-way analysis of variance, and the means were compared by Tukey's test, 5% probability (p < 0.05). The results obtained in the GC/MS analysis showed that the major compounds were butyl isothiocyanate (42.60%) and isobutyl isothiocyanate (42.28%). The germination speed index (GSI) showed negative results for all treatments evaluated, with greater significance for higher concentrations. The different concentrations of the oil caused negative results in the average growth of the radicle and stem of C. procera. Additional studies on the compounds responsible for the observed activities and new tests to confirm the use of natural herbicides are essential to ensure their use.
Collapse
Affiliation(s)
| | - Natália Kelly Gomes de Carvalho
- Postgraduate Program in Chemical Biology, Department of Chemical Biology, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Mariana Pereira da Silva
- Postgraduate Program in Chemical Biology, Department of Chemical Biology, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Maria Arlene Pessoa da Silva
- Postgraduate Program in Biological Diversity and Natural Resources, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Bruno Melo de Alcântara
- Postgraduate Program in Biological Diversity and Natural Resources, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - José Galberto Martins da Costa
- Postgraduate Program in Chemical Biology, Department of Chemical Biology, Universidade Regional do Cariri, Crato, Ceará, Brazil
| |
Collapse
|
2
|
Acosta-Vega L, Cifuentes A, Ibáñez E, Galeano Garcia P. Exploring Natural Deep Eutectic Solvents (NADES) for Enhanced Essential Oil Extraction: Current Insights and Applications. Molecules 2025; 30:284. [PMID: 39860154 PMCID: PMC11767276 DOI: 10.3390/molecules30020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Essential oils (EOs) are highly valued in the cosmetic and food industries for their diverse properties. However, traditional extraction methods often result in low yields, inconsistent compositions, lengthy extraction times, and the use of potentially harmful solvents. Natural deep eutectic solvents (NADES) have emerged as promising alternatives, offering advantages such as higher efficiency, cost-effectiveness, biodegradability, and tunable properties. This review explores the application of NADES in enhancing EO extraction, focusing on current methodologies, key insights, and practical applications. It examines the factors that influence EO extraction with NADES, including the optimization of their physicochemical properties, extraction techniques, operational conditions, and the role of sample pretreatment in improving efficiency. Additionally, this review covers the chemical characterization and biological activities of EOs extracted using NADES. By providing a comprehensive overview, it highlights the potential of NADES to improve EO extraction and suggests directions for future research in this field.
Collapse
Affiliation(s)
- Luis Acosta-Vega
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Colombia;
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Paula Galeano Garcia
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Colombia;
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
3
|
Parić A, Mesic A, Mahmutović-Dizdarević I, Jerković-Mujkić A, Žujo B, Bašić N, Pustahija F. Bioactive potential of Mentha arvensis L. essential oil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:584-594. [PMID: 39192720 DOI: 10.1080/03601234.2024.2396730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The aim of this study was to evaluate the phytotoxic, genotoxic, cytotoxic and antimicrobial effects of the Mentha arvensis L. essential oil (EO). The biological activity of M. arvensis EO depended on the analyzed variable and the tested oil concentration. Higher concentrations of EO (20 and 30 µg mL-1) showed a moderate inhibitory effect on the germination and growth of seedlings of tested weed species (Bellis perennis, Cyanus segetum, Daucus carota, Leucanthemum vulgare, Matricaria chamomilla, Nepeta cataria, Taraxacum officinale, Trifolium repens and Verbena × hybrida). The results obtained also indicate that the EO of M. arvensis has some genotoxic, cytotoxic and proliferative potential in both plant and human in vitro systems. Similar results were obtained for antimicrobial activity against eight bacteria, including multidrug-resistant (MDR) strains [Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Escherichia coli, extended-spectrum beta-lactamase-producing (ESBL) E. coli, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica serovar Enteritidis], with the effect on multidrug-resistant bacterial strains. Research indicates that the EO of M. arvensis shows phytotoxic, genotoxic, cytotoxic and antimicrobial effects, as well as its potential application as a herbicide and against various human diseases.
Collapse
Affiliation(s)
- Adisa Parić
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Aner Mesic
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | | | - Belma Žujo
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Neđad Bašić
- Faculty of Forestry, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Fatima Pustahija
- Faculty of Forestry, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
4
|
Xie M, Wang X. Allelopathic effects of Thuidium kanedae on four urban spontaneous plants. Sci Rep 2024; 14:14794. [PMID: 38926472 PMCID: PMC11208615 DOI: 10.1038/s41598-024-65660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
The spontaneous plant landscape is a key focus in the development of urban environments. While many spontaneous plants can coexist with bryophytes to create appealing wilderness landscapes, the potential allelopathic effects of bryophytes on the growth of neighboring spontaneous plants remain uncertain. This study evaluated the allelopathic impact of Thuidium kanedae aqueous extracts on the germination and seedling growth of prevalent urban spontaneous plants by analyzing seed germination, seedling growth morphology, and associated indices. We also investigated the allelopathic potential of the predominant compounds in the extract on seed germination. Our findings reveal that the aqueous extract significantly impeded the seed germination of Ophiopogon japonicus, Taraxacum mongolicum, and Viola philippica, with the level of inhibition correlating positively with concentration. In contrast, Senecio scandens seed germination showed a concentration-dependent reaction, with low concentrations promoting and high concentrations hindering germination. The extract consistently reduced root length in all four species, yet it appeared to increase root vigor. The chlorophyll content in O. japonicus and V. philippica seedlings reached a maximum at a concentration of 5 g/L and decreased with higher extract concentrations. The treatment resulted in elevated catalase and soluble protein levels in the seedlings, indicating that the extract induced stress and enhanced the stress resistance index. L-phenylalanine and 2-phenylethanol, substances present in the extract, were notably inhibitory to seed germination across all species, except for O. japonicus. Notably, 2-phenylethanol exhibited a stronger allelopathic effect than L-phenylalanine. Allelopathy synthetical effect evaluation showed that high concentration of aqueous extract allelopathic inhibition effect on seed germination of four plant species, but allelopathic promotion effect on physiological and biochemical growth of Taraxacum mongolicum, Senecio scandens and Viola philippica. In summary, the study demonstrates that bryophytes exert allelopathic effects on neighboring spontaneous plants, with the degree of influence varying among species. This suggests that the germination and growth of spontaneous plant seeds may be selective in bryophyte-dominated habitats and that the density of bryophytes could shape the evolution of these landscapes.
Collapse
Affiliation(s)
- Muyan Xie
- College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xiurong Wang
- College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
5
|
Prosche S, Stappen I. Flower Power: An Overview on Chemistry and Biological Impact of Selected Essential Oils from Blossoms. PLANTA MEDICA 2024; 90:595-626. [PMID: 38843799 DOI: 10.1055/a-2215-2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Natural raw materials such as essential oils have received more and more attention in recent decades, whether in the food industry, as flavorings and preservatives, or as insecticides and insect repellents. They are, furthermore, very popular as fragrances in perfumes, cosmetics, and household products. In addition, aromatherapy is widely used to complement conventional medicine. This review summarizes investigations on the chemical composition and the most important biological impacts of essential oils and volatile compounds extracted from selected aromatic blossoms, including Lavandula angustifolia, Matricaria recutita, Rosa x damascena, Jasminum grandiflorum, Citrus x aurantium, Cananga odorata, and Michelia alba. The literature was collected from PubMed, Google Scholar, and Science Direct. Blossom essential oils discussed in this work are used in a wide variety of clinical issues. The application is consistently described as safe in studies and meta-analyses, although there are notes that using essential oils can also have side effects, especially dermatologically. However, it can be considered as confirmed that essential oils have positive influences on humans and can improve quality of life in patients with psychiatric disorders, critically ill patients, and patients in other exceptional situations. Although the positive effect of essential oils from blossoms has repeatedly been reported, evidence-based clinical investigations are still underrepresented, and the need for research is demanded.
Collapse
Affiliation(s)
- Sinah Prosche
- Department of Pharmaceutical Sciences, University of Vienna, Austria
| | - Iris Stappen
- Department of Pharmaceutical Sciences, University of Vienna, Austria
| |
Collapse
|
6
|
Feng J, Yanshao B, Wang H, Zhang X, Wang F. Recent advancements on use of essential oils as preservatives against fungi and mycotoxins spoiling food grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1242-1263. [PMID: 37549249 DOI: 10.1080/19440049.2023.2240894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Spoilage of grains by mycotoxigenic fungi poses a great threat to food security and human health. Conventionally used chemical agents to prevent grain fungi contamination cause increasingly significant problems such as microbial resistance, residual toxicity and environmental unfriendliness. In recent years, plant essential oils (EOs) have become a hot spot in the research of control of grain fungi and mycotoxins, due to their extensive sources, non-toxicity, environmental friendliness and good antifungal efficiency. The current review aims to provide an overview of the prevention of fungi and mycotoxins in grain through EOs. The antifungal and toxin inhibition efficiency of different EOs and their effective components are investigated. The inhibition mechanism of EOs on fungi and mycotoxins in grains is introduced. The influence of EOs treatment on the change of grain quality is also discussed. In addition, the formulations and techniques used to overcome the disadvantages of EOs application are introduced. The results of recent studies have confirmed that EOs provide great potential for controlling common fungi and mycotoxins in grains, and enhancing quantity and quality safety of grains.
Collapse
Affiliation(s)
- Jiachang Feng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Bowen Yanshao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - He Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaowei Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Fenghe Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
7
|
Bolouri P, Salami R, Kouhi S, Kordi M, Asgari Lajayer B, Hadian J, Astatkie T. Applications of Essential Oils and Plant Extracts in Different Industries. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248999. [PMID: 36558132 PMCID: PMC9781695 DOI: 10.3390/molecules27248999] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Essential oils (EOs) and plant extracts are sources of beneficial chemical compounds that have potential applications in medicine, food, cosmetics, and the agriculture industry. Plant medicines were the only option for preventing and treating mankind's diseases for centuries. Therefore, plant products are fundamental sources for producing natural drugs. The extraction of the EOs is the first important step in preparing these compounds. Modern extraction methods are effective in the efficient development of these compounds. Moreover, the compounds extracted from plants have natural antimicrobial activity against many spoilage and disease-causing bacteria. Also, the use of plant compounds in cosmetics and hygiene products, in addition to their high marketability, has been helpful for many beauty problems. On the other hand, the agricultural industry has recently shifted more from conventional production systems to authenticated organic production systems, as consumers prefer products without any pesticide and herbicide residues, and certified organic products command higher prices. EOs and plant extracts can be utilized as ingredients in plant antipathogens, biopesticides, and bioherbicides for the agricultural sector. Considering the need and the importance of using EOs and plant extracts in pharmaceutical and other industries, this review paper outlines the different aspects of the applications of these compounds in various sectors.
Collapse
Affiliation(s)
- Parisa Bolouri
- Department of Field Crops, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
- Department of Genetic and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Robab Salami
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Shaghayegh Kouhi
- Department of Horticultural Sciences, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari 4818168984, Iran
| | - Masoumeh Kordi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz 5166616422, Iran
- Correspondence: (B.A.L.); (T.A.)
| | - Javad Hadian
- Department of Agriculture, University of The Fraser Valley, Abbotsford, BC V2S 7M7, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Correspondence: (B.A.L.); (T.A.)
| |
Collapse
|
8
|
Wang L, Li J, Yang F, Dai D, Li X, Sheng Y. A preliminary mapping of QTL qsg5.1 controlling seed germination in melon ( Cucumis melo L.). FRONTIERS IN PLANT SCIENCE 2022; 13:925081. [PMID: 36046593 PMCID: PMC9421157 DOI: 10.3389/fpls.2022.925081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Melon (Cucumis melo L.) seed germination significantly affects its economic value. Cultivation of melon varieties with high germination ability and seedling vigor is beneficial in large-scale melon propagation. In this study, two melon genotypes differing in their germination ability, P5 with low and P10 with high germination ability, were used to identify the optimal seed germination conditions by evaluating different water immersion times and germination temperatures. The germination rate of the P5 and P10 parental genotypes and their segregating population, consisting of 358 F2:3 families, were evaluated for 2 years to identify their genetic basis. QTL analysis was performed on a high-density genetic map constructed using specific-locus amplified fragment sequencing (SLAF-seq). The germination rate of F1 and F2 populations treated with water immersion for 8 h at 28°C and measured at 48 h showed a normal distribution Genetic mapping carried out using the high-density genetic map revealed eight QTLs in chromosomes 2, 4, 5, 6, and 8 that control melon seed germination, of which 2020/2021-qsg5.1 was consistently significant in both years of experimentation. qsg5.1 explained 15.13% of the phenotypic variance with a LOD of 4.1. To fine map the candidate region of qsg5.1, eight cleaved amplified polymorphism sequence (CAPS) markers were used to construct a genetic map with another 421 F2 individual fruits. The major QTL qsg5.1 was located between SNP53 and SNP54 within a 55.96 Kb interval containing four genes. qRT-PCR gene expression analysis of the candidate genes showed that MELO3C031219.2 (Phosphorus transporter PHO-5) exhibited a significant difference in gene expression between the parental lines at 24, 32, and 48 h after germination, potentially being the underlying gene controlling melon seed germination. These results provide a theoretical basis for the molecular mechanisms controlling melon seed germination and can practically contribute to further improving germination to increase the propagation efficiency of commercial melon cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunyan Sheng
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|