1
|
Chaudhary S, Selvaraj V, Awasthi P, Bhuria S, Purohit R, Kumar S, Hallan V. Small Heat Shock Protein (sHsp22.98) from Trialeurodes vaporariorum Plays Important Role in Apple Scar Skin Viroid Transmission. Viruses 2023; 15:2069. [PMID: 37896846 PMCID: PMC10611230 DOI: 10.3390/v15102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Trialeurodes vaporariorum, commonly known as the greenhouse whitefly, severely infests important crops and serves as a vector for apple scar skin viroid (ASSVd). This vector-mediated transmission may cause the spread of infection to other herbaceous crops. For effective management of ASSVd, it is important to explore the whitefly's proteins, which interact with ASSVd RNA and are thereby involved in its transmission. In this study, it was found that a small heat shock protein (sHsp) from T. vaporariorum, which is expressed under stress, binds to ASSVd RNA. The sHsp gene is 606 bp in length and encodes for 202 amino acids, with a molecular weight of 22.98 kDa and an isoelectric point of 8.95. Intermolecular interaction was confirmed through in silico analysis, using electrophoretic mobility shift assays (EMSAs) and northwestern assays. The sHsp22.98 protein was found to exist in both monomeric and dimeric forms, and both forms showed strong binding to ASSVd RNA. To investigate the role of sHsp22.98 during ASSVd infection, transient silencing of sHsp22.98 was conducted, using a tobacco rattle virus (TRV)-based virus-induced gene silencing system. The sHsp22.98-silenced whiteflies showed an approximate 50% decrease in ASSVd transmission. These results suggest that sHsp22.98 from T. vaporariorum is associated with viroid RNA and plays a significant role in transmission.
Collapse
Affiliation(s)
- Savita Chaudhary
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
| | - Vijayanandraj Selvaraj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
- Plant Molecular Virology Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Preshika Awasthi
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Swati Bhuria
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
- Plant Molecular Virology Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Rituraj Purohit
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
- Bioinformatics Lab, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Surender Kumar
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Vipin Hallan
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
| |
Collapse
|
2
|
Chase O, Javed A, Byrne MJ, Thuenemann EC, Lomonossoff GP, Ranson NA, López-Moya JJ. CryoEM and stability analysis of virus-like particles of potyvirus and ipomovirus infecting a common host. Commun Biol 2023; 6:433. [PMID: 37076658 PMCID: PMC10115852 DOI: 10.1038/s42003-023-04799-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Sweet potato feathery mottle virus (SPFMV) and Sweet potato mild mottle virus (SPMMV) are members of the genera Potyvirus and Ipomovirus, family Potyviridae, sharing Ipomoea batatas as common host, but transmitted, respectively, by aphids and whiteflies. Virions of family members consist of flexuous rods with multiple copies of a single coat protein (CP) surrounding the RNA genome. Here we report the generation of virus-like particles (VLPs) by transient expression of the CPs of SPFMV and SPMMV in the presence of a replicating RNA in Nicotiana benthamiana. Analysis of the purified VLPs by cryo-electron microscopy, gave structures with resolutions of 2.6 and 3.0 Å, respectively, showing a similar left-handed helical arrangement of 8.8 CP subunits per turn with the C-terminus at the inner surface and a binding pocket for the encapsidated ssRNA. Despite their similar architecture, thermal stability studies reveal that SPMMV VLPs are more stable than those of SPFMV.
Collapse
Affiliation(s)
- Ornela Chase
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Abid Javed
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew J Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot, Oxfordshire, OX11 0DE, UK
| | - Eva C Thuenemann
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - George P Lomonossoff
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
3
|
Sareli K, Winter S, Chatzivassiliou EΚ, Knierim D, Margaria P. High molecular diversity of full-length genome sequences of zucchini yellow fleck virus from Europe. Arch Virol 2022; 167:2305-2310. [PMID: 35941394 PMCID: PMC9556397 DOI: 10.1007/s00705-022-05558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
Abstract
Zucchini yellow fleck virus (ZYFV), genus Potyvirus, is the causal agent of a disease of cucurbits. The genome sequences of seven ZYFV isolates of different origin were determined, two of which were reconstructed from a squash (Cucurbita sp.) collected in 2017 in Greece, while the others, accessions from the DSMZ Plant Virus Collection, were from samples collected in Italy, Greece, and France in the 1980s and 1990s. A high level of molecular diversity, well dispersed along the genome, was observed, but this was within the limits for assignment of the virus isolates to the same species. P1 was the most diverse gene, and isolates from squash contained an insertion in this gene.
Collapse
Affiliation(s)
- Kyriaki Sareli
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, GmbH, Braunschweig, Germany
- Laboratory of Plant Pathology, Department of Crop Science, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, Athens, Greece
| | - Stephan Winter
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, GmbH, Braunschweig, Germany
| | - Elisavet Κ Chatzivassiliou
- Laboratory of Plant Pathology, Department of Crop Science, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, Athens, Greece.
| | - Dennis Knierim
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, GmbH, Braunschweig, Germany
| | - Paolo Margaria
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, GmbH, Braunschweig, Germany.
| |
Collapse
|