1
|
Wang Z, Shen W, Li Y, Wang X, Zhong X, Wang X. Multi-omics Analysis of Klebsiella pneumoniae Revealed Opposing Effects of Rutin and Luteolin on Strain Growth. Curr Microbiol 2024; 82:9. [PMID: 39585437 DOI: 10.1007/s00284-024-03982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
The emergence of pathogenic bacteria resistant to conventional antibiotics is becoming increasingly challenging. Plant-derived flavonoids are potential alternatives to antibiotics, owing to their antimicrobial properties. However, the molecular mechanisms through which they inhibit the growth of pathogenic microorganisms remain unclear. Therefore, Klebsiella pneumoniae ATCC700603 was separately incubated in two flavonoids to elucidate their inhibitory mechanism. Metabolomic and transcriptomic analyses were performed after 4-h incubation. In total, 5483 genes and 882 metabolites were identified. Compared to the untreated control, rutin and luteolin activated 507 and 374 differentially expressed genes (DEGs), respectively. However, the number of differential abundant metabolites (DAMs) remained the same. The top 10 correlated DEGs and DAMs were identified within each comparative group after a correlation analysis. Rutin induced the accumulation of unique metabolites and suppressed gene expression whereas luteolin did not. Our results explain the disparate effects of these two flavonoids and demonstrate the inhibitory mechanism of rutin on strain growth.
Collapse
Affiliation(s)
- Zhibin Wang
- Inflammation & Allergic Diseases Research Unit, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wanxia Shen
- Citrus Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Yuejiao Li
- Inflammation & Allergic Diseases Research Unit, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Uc-Cachón AH, Dzul-Beh A, González-Cortázar M, Zamilpa-Álvarez A, Molina-Salinas GM. Investigating the anti-growth, anti-resistance, and anti-virulence activities of Schoepfia schreberi J.F.Gmel. against the superbug Acinetobacter baumannii. Heliyon 2024; 10:e31420. [PMID: 38813144 PMCID: PMC11133943 DOI: 10.1016/j.heliyon.2024.e31420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Schoepfia schreberi has been used in Mayan folk medicine to treat diarrhea and cough. This study aimed to determine the anti-growth, anti-resistance, and/or anti-virulence activities of S. schreberi extracts against Acinetobacter baumannii, a pathogen leader that causes healthcare-associated infections with high rates of drug-resistant including carbapenems, the last line of antibiotics known as superbugs, and analyze their composition using HPLC-DAD. Ethyl acetate (SSB-3) and methanol (SSB-4) bark extracts exhibit antimicrobial and biocidal effects against drug-susceptible and drug-resistant A. baumannii. Chemical analysis revealed that SSB-3 and SSB-4 contained of gallic and ellagic acids derivatives. The anti-resistance activity of the extracts revealed that SSB-3 or SSB-4, combined with imipenem, exhibited potent antibiotic reversal activity against A. baumannii by acting as pump efflux modulators. The extracts also displayed activity against surface motility of A. baumannii and its capacity to survive reactive oxygen species. This study suggests that S. schreberi can be considered a source of antibiotics, even adjuvanted compounds, as anti-resistant or anti-virulence agents against A. baumannii, contributing to ethnopharmacological knowledge and reappraisal of Mayan medicinal flora, and supporting the traditional use of the bark of the medicinal plant S. schreberi for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Andrés Humberto Uc-Cachón
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
| | - Angel Dzul-Beh
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, 11340, Mexico
| | - Manases González-Cortázar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, 62790, Morelos, Mexico
| | - Alejandro Zamilpa-Álvarez
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, 62790, Morelos, Mexico
| | - Gloria María Molina-Salinas
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
| |
Collapse
|
3
|
Thesnor V, Molinié R, Giebelhaus RT, de la Mata Espinosa AP, Harynuk JJ, Bénimélis D, Vanhoye B, Dunyach-Rémy C, Sylvestre M, Cheremond Y, Meffre P, Cebrián-Torrejón G, Benfodda Z. Antibacterial Activity and Untargeted Metabolomics Profiling of Acalypha arvensis Poepp. Molecules 2023; 28:7882. [PMID: 38067611 PMCID: PMC10708339 DOI: 10.3390/molecules28237882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The search for potent antimicrobial compounds is critical in the face of growing antibiotic resistance. This study explores Acalypha arvensis Poepp. (A. arvensis), a Caribbean plant traditionally used for disease treatment. The dried plant powder was subjected to successive extractions using different solvents: hexane (F1), dichloromethane (F2), methanol (F3), a 50:50 mixture of methanol and water (F4), and water (F5). Additionally, a parallel extraction was conducted using a 50:50 mixture of methanol and chloroform (F6). All the fractions were evaluated for their antimicrobial activity, and the F6 fraction was characterized using untargeted metabolomics using SPME-GC×GC-TOFMS. The extracts of A. arvensis F3, F4, and F5 showed antibacterial activity against Staphylococcus aureus ATCC 25923 (5 mg/mL), MRSA BA22038 (5 mg/mL), and Pseudomonas aeruginosa ATCC 27853 (10 mg/mL), and fraction F6 showed antibacterial activity against Staphylococcus aureus ATCC 29213 (2 mg/mL), Escherichia coli ATCC 25922 (20 mg/mL), Pseudomonas aeruginosa ATCC 27853 (10 mg/mL), Enterococcus faecalis ATCC 29212 (10 mg/mL), Staphylococcus aureus 024 (2 mg/mL), and Staphylococcus aureus 003 (2 mg/mL). Metabolomic analysis of F6 revealed 2861 peaks with 58 identified compounds through SPME and 3654 peaks with 29 identified compounds through derivatization. The compounds included methyl ester fatty acids, ethyl ester fatty acids, terpenes, ketones, sugars, amino acids, and fatty acids. This study represents the first exploration of A. arvensis metabolomics and its antimicrobial potential, providing valuable insights for plant classification, phytochemical research, and drug discovery.
Collapse
Affiliation(s)
- Valendy Thesnor
- UPR Chrome, University Nimes, CEDEX 1, 30021 Nîmes, France; (V.T.); (D.B.); (P.M.)
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, UFR SEN, Fouillole Campus, University of Antilles, CEDEX, 97110 Pointe-à-Pitre, France;
- URE, Université d’État d’Haïti, Port-au-Prince HT6110, Haiti;
| | - Roland Molinié
- UMR INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UPJV, UFR de Pharmacie, 80037 Amiens, France; (R.M.); (B.V.)
| | - Ryland T. Giebelhaus
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada; (R.T.G.); (A.P.d.l.M.E.); (J.J.H.)
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2N4, Canada
| | - A. Paulina de la Mata Espinosa
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada; (R.T.G.); (A.P.d.l.M.E.); (J.J.H.)
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2N4, Canada
| | - James J. Harynuk
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada; (R.T.G.); (A.P.d.l.M.E.); (J.J.H.)
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2N4, Canada
| | - David Bénimélis
- UPR Chrome, University Nimes, CEDEX 1, 30021 Nîmes, France; (V.T.); (D.B.); (P.M.)
| | - Bérénice Vanhoye
- UMR INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UPJV, UFR de Pharmacie, 80037 Amiens, France; (R.M.); (B.V.)
| | | | - Muriel Sylvestre
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, UFR SEN, Fouillole Campus, University of Antilles, CEDEX, 97110 Pointe-à-Pitre, France;
| | - Yvens Cheremond
- URE, Université d’État d’Haïti, Port-au-Prince HT6110, Haiti;
| | - Patrick Meffre
- UPR Chrome, University Nimes, CEDEX 1, 30021 Nîmes, France; (V.T.); (D.B.); (P.M.)
| | - Gerardo Cebrián-Torrejón
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, UFR SEN, Fouillole Campus, University of Antilles, CEDEX, 97110 Pointe-à-Pitre, France;
| | - Zohra Benfodda
- UPR Chrome, University Nimes, CEDEX 1, 30021 Nîmes, France; (V.T.); (D.B.); (P.M.)
| |
Collapse
|
4
|
Bhaskaracharya RK, Bhaskaracharya A, Stathopoulos C. A systematic review of antibacterial activity of polyphenolic extract from date palm ( Phoenix dactylifera L.) kernel. Front Pharmacol 2023; 13:1043548. [PMID: 36703735 PMCID: PMC9871312 DOI: 10.3389/fphar.2022.1043548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Emergence of antibiotic-resistant bacteria makes exploration of natural antibacterial products imperative. Like other fruit processing industry by-products, date kernels, a waste from date processing industry is rich in its extractable polyphenols. The rich polyphenolic content suggests that date kernel extracts (DKE) can be a cost-effective source of antimicrobial agents, however, their antibacterial activity is poorly understood. Hence, a systematic review of available literature to establish DKE's antibacterial activity is warranted. Methods: A systematic PRISMA approach was employed, and relevant studies were identified using defined keywords from Google Scholar, Scopus, PubMed, and Web of Science databases. The search results were screened based on predefined eligibility criteria and data extraction, organization, pooling, and descriptive statistical analyses of original research records conducted. Results: A total of 888 published records were retrieved from databases. Preliminary screening by applying specific eligibility criteria reduced records to 96 which after full text screening further decreased to 14 records. Escherichia coli and Staphylococcus aureus were the most studied organisms. Results indicate moderate to highly active effect shown by the less polar solvent based DKE's against Gram-positive and by the aqueous based DKE's against Gram-negative bacteria. The review confirms antibacterial activity of DKE against both Gram-positive and -negative bacteria. Heterogeneity in reported polyphenolic content and antibacterial activity are due to differences in cultivars, extraction methods, test methods, model organisms, etc. Use of standardized protocols for isolation, characterization, testing of DKE's active polyphenols to elucidate its antibacterial activity is recommended to establish the clinical efficacy of natural antibacterial compounds from DKE. Conclusion: This review outlines the current knowledge regarding antibacterial activity of polyphenolic DKE, identifying gaps in information and provides key recommendations for future research directions.
Collapse
Affiliation(s)
- Raman K. Bhaskaracharya
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates,*Correspondence: Raman K. Bhaskaracharya,
| | - Archana Bhaskaracharya
- Nepean Blue Mountains Local Health District/ University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
5
|
Castillo-Mendoza E, Zamilpa A, González-Cortazar M, Ble-González EA, Tovar-Sánchez E. Chemical Constituents and Their Production in Mexican Oaks ( Q. Rugosa, Q. Glabrescens and Q. Obtusata). PLANTS (BASEL, SWITZERLAND) 2022; 11:2610. [PMID: 36235477 PMCID: PMC9573139 DOI: 10.3390/plants11192610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Mexico is considered one of the main regions of diversification of the genus Quercus (oaks). Oak species are one of the most important tree groups, particularly in temperate forests, due to its diversity and abundance. Some studies have shown that oak contains specialized metabolites with medicinal importance. In this work, the acetonic extract from leaves of three Mexican oaks (Quercus rugosa, Q. glabrescens, and Q. obtusata) was separated using thin-layer chromatography and column chromatography. Chemical identification of the major compounds was determined using high-performance liquid chromatography and nuclear magnetic resonance. Nineteen compounds were identified, three belonging to the terpenoid family (ursolic acid, β-amyrin, and β-sitosterol) and 16 from the phenolic family. Of the isolated compounds, seven are new reports for oak species (scopoletin, ursolic acid, β-amyrin, luteolin-7-O-glucoside, kaempferol-3-O-sophoroside, kaempferol-3-O-glucoside, and kaempferol-3-O-sambubioside). More compounds were identified in Q. rugosa followed by Q. glabrescens and then Q. obtusata. The characterization of specialized metabolites in oak species is relevant, from both phytocentric and anthropocentric perspectives.
Collapse
Affiliation(s)
- Elgar Castillo-Mendoza
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico
| | - Ever A. Ble-González
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán 86690, Tabasco, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|