1
|
Córdoba-Tovar L, Marrugo-Madrid S, Castro LP, Tapia-Contreras EE, Marrugo-Negrete J, Díez S. Exploring the phytoremediation potential of plant species in soils impacted by gold mining in Northern Colombia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3795-3808. [PMID: 39838212 PMCID: PMC11835935 DOI: 10.1007/s11356-024-35853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025]
Abstract
Contamination of soils with toxic metals poses significant threats to human health and ecosystems. Plant-based remediation strategies can play a vital role in mitigating these risks, and the use of plants as a remediation strategy can help reduce these risks. In this study, we investigate the remediation potential of native plants in accumulating and translocating metal(loid)s at a Colombian site impacted by gold mining. The remediation capacity is evaluated using the translocation factor (TF) from roots to shoots and the bioconcentration factor (BCF) from soil to roots. Metal(loid) concentrations in the soil followed the order: Fe > As > Hg > Cd > Pb > Zn > Mn > Cu. In plant tissues, Hg showed higher accumulation in leaves (3.5 mg/kg) compared to roots (2.8 mg/kg). Pb (17.7 mg/kg), As (3.8 mg/kg), Fe (2.5 mg/kg) and Cd (1.2 mg/kg) concentracions were also higher in roots. Metal concentrations in the stems, were generally below 1.0 mg/kg, except for Pb (15.0 mg/kg) and Hg (1.0 mg/kg). The highest BCF values for Hg were observed in Spondias mombin L. (18.7), Cecropia peltata L. (8.3) and Gliricidia sepium (Jacq.) Walp (4.4). On the other hand, Senna alata (L.) Roxb., Psidium guajava L. and Morinda citrifolia L. exhibited notable BFC values for As with 44.7, 6.3 and 5.9, respectively. Musa x paradisiaca L. had the highest BCF for Cd (1.8). M. citrifolia (4.3) and Annona muricata L. (3.2) exhibited the highest TF for Hg, while Tabebuia rosea (Bertol.) Bertero ex A.DC. (4.9) and Paspalum fasciculatum Willd. ex (3.1) demonstrated elevated TF values for Pb. In conclusion, plants such as P. fasciculatum, A. muricata, M. citrifolia, G. sepium and T. rosea exhibit great potential for application in phytoremediation strategies in tropical regions impacted by gold mining activities.
Collapse
Affiliation(s)
- Leonomir Córdoba-Tovar
- Environmental Toxicology and Natural Resources Group, Universidad Tecnológica del Chocó, A.A. 292, Quibdó, Chocó, Colombia
| | | | | | | | | | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034, Barcelona, Spain.
| |
Collapse
|
2
|
López JE, Marín JF, Saldarriaga JF. Proposal for a framework for environmental zoning of areas near gold mines based on the distribution of potentially toxic elements, pollution indices, and bioindicators: a case study in Antioquia, Colombia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:933. [PMID: 39271620 PMCID: PMC11399291 DOI: 10.1007/s10661-024-13079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Gold mining, even under strict environmental regulations, inevitably causes environmental impacts and liabilities. To address this, the study proposes a framework for environmental zoning around gold mines based on the distribution of potentially toxic elements (PTEs), pollution indices, and bioindicators. Soil samples were collected from municipalities affected by gold mining projects, and concentrations of As, Cd, Pb, and Cr were measured. Then, the Pollution Load Index (PLI) was calculated. A plant model was used for the biomonitoring of PTEs, and the Plant Vigor Index (PVI) was determined. Finally, environmental zoning was proposed through geospatial analysis combining PTEs, PLI, and PVI values. The concentrations of PTEs were as follows: As ranged from 1.7 to 892, Cd from 0.1 to 65.2, Pb from 18.5 to 2345, and Cr from 5.4 to 118.4. Spearman's rank correlation showed significant relations (ρ > 0.76) between bioindicators and PTE concentrations and PLI. The PVI correlated significantly with PTE concentrations (ρ - 0.41 to - 0.67) and PLI (ρ - 0.65). The municipalities were categorized into three zones: highly contaminated, moderately contaminated, and minimally contaminated. Overall, the environmental zoning maps serve as a management tool for environmental monitoring.
Collapse
Affiliation(s)
- Julián E López
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65-46, , 050034, Medellín, Colombia.
- Faculty of Engineering, Universidad de Medellín, 050026, Medellín, Colombia.
| | - Juan F Marín
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65-46, , 050034, Medellín, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este, #19A-40, 111711, Bogotá, Colombia
| |
Collapse
|
3
|
López JE, Marín JF, Saldarriaga JF. Assessing pollution degree and human health risks from hazardous element distribution in soils near gold mines in a Colombian Andean region: Correlation with phytotoxicity biomarkers. CHEMOSPHERE 2024; 361:142471. [PMID: 38815814 DOI: 10.1016/j.chemosphere.2024.142471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
The assessment of human health risk due to the presence of hazardous elements in the environment is now necessary for environmental management and legislative initiatives. This study aims to determine the contamination by As, Cd, Pb, and Cr in soils near gold mines in three municipalities located in the Andean region of Colombia. One of the main objectives of the study is to explore possible correlations between the Lifetime Cancer Risk (LCR) and phytotoxicity biomarkers using a simple and rapid-response plant model, radish (Raphanus sativus L.). In the municipality of Yalí, Puerto Berrío, and Buriticá, the hazardous elements concentrations ranged from 8.1 to 35.5, 1.7 to 892, and 5.8 to 49.8 for As, 0.1 to 4.6, 0.1 to 65.2, and 0.5 to 18.2 for Cd, 18.5 to 201.3, 13.0 to 1908, and 189 to 2345 for Pb, and 5.4 to 118.4, 65.4 to 301, and 5.4 to 102.3 for Cr, respectively. The results showed that the biomarkers intracellular H2O2 concentration, antioxidant activity, and radicle elongation exhibited significant (P < 0.05) variations associated with the concentration of hazardous elements in the soils. Significant correlations (P < 0.05, r > 0.58) were found between the biomarkers and the LCR for Cd, Pb, and Cr, but not for As. The results using biomarkers reveal that soil pH and organic matter content are important variables that control the bioavailability of these elements in the soil. The use of indicators like LCR alone has limitations and should be accompanied by the use of biomarkers that allow for a better understanding of the biological system's response to exposure to potentially toxic elements. The results obtained show the urgent need to implement public policies to minimize exposure to hazardous substances in areas near gold mining projects.
Collapse
Affiliation(s)
- Julián E López
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034, Medellín, Colombia.
| | - Juan F Marín
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034, Medellín, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia
| |
Collapse
|
4
|
Chirilă Băbău AM, Micle V, Damian GE, Sur IM. Lead and copper removal from sterile dumps by phytoremediation with Robinia pseudoacacia. Sci Rep 2024; 14:9842. [PMID: 38684877 PMCID: PMC11059218 DOI: 10.1038/s41598-024-60412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
In Romania, huge quantities of gangue material from the mining activity practiced in the past were improperly stored and led to the pollution of the environment. Thus, this work is framed to manage the sterile dump of the "Radeș" mine (Alba, Romania) through a 12-week phytoremediation process. The efficient use of Robinia pseudoacacia was studied through the implementation, at the laboratory level, of a phytoremediation experiment based on various variants prepared by mixtures of gangue material, uncontaminated soil, and dehydrated sludge. The prepared variants, all planted with R. pseudoacacia, were watered with tap water, potassium monobasic phosphate, and enzyme solution. The bioconcentration and translocation factors for lead showed values ˂ 1, which indicates a potential presence of an exclusion system for Pb or a reduced Pb bioavailability since the R. pseudoacacia accumulates high concentrations of metals absorbed on and inside the roots. For copper, both factors had values > 1 indicating the suitability of R. pseudoacacia to readily translocate copper into the epigean organs. In the investigated experimental conditions, the highest efficiency in the removal of copper (93.0%) and lead (66.4%) by plants was obtained when gangue material was not mixed with other materials and wetted with enzymatic solution.
Collapse
Affiliation(s)
- Adriana Mihaela Chirilă Băbău
- Department of Environment Engineering and Entrepreneurship of Sustainable Development, Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400 641, Cluj-Napoca, Romania
| | - Valer Micle
- Department of Environment Engineering and Entrepreneurship of Sustainable Development, Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400 641, Cluj-Napoca, Romania.
| | - Gianina Elena Damian
- Department of Cadastre, Civil and Environmental Engineering, "1 Decembrie 1918" University of Alba Iulia, Alba Iulia, Romania.
| | - Ioana Monica Sur
- Department of Environment Engineering and Entrepreneurship of Sustainable Development, Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400 641, Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Liu Z, Lu Q, Zhao Y, Wei J, Liu M, Duan X, Lin M. Ameliorating Effects of Graphene Oxide on Cadmium Accumulation and Eco-Physiological Characteristics in a Greening Hyperaccumulator ( Lonicera japonica Thunb.). PLANTS (BASEL, SWITZERLAND) 2023; 13:19. [PMID: 38202327 PMCID: PMC10780341 DOI: 10.3390/plants13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Graphene oxide (GO), as a novel carbon-based nanomaterial (CBN), has been widely applied to every respect of social life due to its unique composite properties. The widespread use of GO inevitably promotes its interaction with heavy metal cadmium (Cd), and influences its functional behavior. However, little information is available on the effects of GO on greening hyperaccumulators under co-occurring Cd. In this study, we chose a typical greening hyperaccumulator (Lonicera japonica Thunb.) to show the effect of GO on Cd accumulation, growth, net photosynthesis rate (Pn), carbon sequestration and oxygen release functions of the plant under Cd stress. The different GO-Cd treatments were set up by (0, 10, 50 and 100 mg L-1) GO and (0, 5 and 25 mg L-1) Cd in solution culture. The maximum rate of Cd accumulation in the roots and shoots of the plant were increased by 10 mg L-1 GO (exposed to 5 mg L-1 Cd), indicating that low-concentration GO (10 mg L-1) combined with low-concentration Cd (5 mg L-1) might stimulate the absorption of Cd by L. japonica. Under GO treatments without Cd, the dry weight of root and shoot biomass, Pn value, carbon sequestration per unit leaf area and oxygen release per unit leaf area all increased in various degrees, especially under 10 mg L-1 GO, were 20.67%, 12.04%, 35% and 28.73% higher than the control. Under GO-Cd treatments, it is observed that the cooperation of low-concentration GO (10 mg L-1) and low-concentration Cd (5 mg L-1) could significantly stimulate Cd accumulation, growth, photosynthesis, carbon sequestration and oxygen release functions of the plant. These results indicated that suitable concentrations of GO could significantly alleviate the effects of Cd on L. japonica, which is helpful for expanding the phytoremediation application of greening hyperaccumulators faced with coexistence with environment of nanomaterials and heavy metals.
Collapse
Affiliation(s)
- Zhouli Liu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Qingxuan Lu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Yi Zhao
- School of Chemistry and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Jianbing Wei
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Miao Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Xiangbo Duan
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Maosen Lin
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
6
|
Liu Z, Tian L, Chen M, Zhang L, Lu Q, Wei J, Duan X. Hormesis Responses of Growth and Photosynthetic Characteristics in Lonicera japonica Thunb. to Cadmium Stress: Whether Electric Field Can Improve or Not? PLANTS (BASEL, SWITZERLAND) 2023; 12:933. [PMID: 36840281 PMCID: PMC9960363 DOI: 10.3390/plants12040933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
"Hormesis" is considered a dose-response phenomenon mainly observed at hyperaccumulator plants under heavy metals stress. In this study, the effects of electric fields on hormesis responses in Lonicera japonica Thunb. under cadmium (Cd) treatments were investigated by assessing the plant growth and photosynthetic characteristics. Under Cd treatments without electric fields, the parameters of plant growth and photosynthetic characteristics increased significantly when exposed to 5 mg L-1 Cd, and decreased slightly when exposed to 25 mg L-1 Cd, showing an inverted U-shaped trend, which confirmed that low concentration Cd has a hormesis effect on L. japonica. Under electric fields, different voltages significantly promoted the inverted U-shaped trend of the hormesis effect on the plant, especially by 2 V cm-1 voltage. Under 2 V cm-1 voltage, the dry weight of the root and leaf biomass exposed to 5 mg L-1 Cd increased significantly by 38.38% and 42.14%, and the photosynthetic pigment contents and photosynthetic parameters were also increased significantly relative to the control, indicating that a suitable electric field provides better improvements for the hormesis responses of the plant under Cd treatments. The synergistic benefits of the 5 mg L-1 Cd and 2 V cm-1 electric field in terms of the enhanced hormesis responses of growth and photosynthetic characteristics could contribute to the promoted application of electro-phytotechnology.
Collapse
Affiliation(s)
- Zhouli Liu
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Mengdi Chen
- Academy of Forest and Grassland Inventory and Planning of National Forestry and Grassland Administration, Beijing 100714, China
| | - Luhua Zhang
- State Owned Ying’emen Forest Farm of Qingyuan Manchu Autonomous County, Fushun 113306, China
| | - Qingxuan Lu
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Jianbing Wei
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Xiangbo Duan
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| |
Collapse
|
7
|
Electric Field-Enhanced Cadmium Accumulation and Photosynthesis in a Woody Ornamental Hyperaccumulator—Lonicera japonica Thunb. PLANTS 2022; 11:plants11081040. [PMID: 35448768 PMCID: PMC9030930 DOI: 10.3390/plants11081040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
The multi-system of electro-phytotechnology using a woody ornamental cadmium (Cd) hyperaccumulator (Lonicera japonica Thunb.) is a new departure for environmental remediation. The effects of four electric field conditions on Cd accumulation, growth, and photosynthesis of L. japonica under four Cd treatments were investigated. Under 25 and 50 mg L−1 Cd treatments, Cd accumulation in L. japonica was enhanced significantly compared to the control and reached 1110.79 mg kg−1 in root and 428.67 mg kg−1 in shoots influenced by the electric field, especially at 2 V cm−1, and with higher bioaccumulation coefficient (BC), translocation factor (TF), removal efficiency (RE), and the maximum Cd uptake, indicating that 2 V cm−1 voltage may be the most suitable electric field for consolidating Cd-hyperaccumulator ability. It is accompanied by increased root and shoots biomass and photosynthetic parameters through the electric field effect. These results show that a suitable electric field may improve the growth, hyperaccumulation, and photosynthetic ability of L.japonica. Meanwhile, low Cd supply (5 mg L−1) and medium voltage (2 V cm−1) improved plant growth and photosynthetic capacity, conducive to the practical application to a plant facing low concentration Cd contamination in the real environment.
Collapse
|