1
|
Cheng X, Yang X, Zhang Q, Kou T, Hou W, Li Y. Melatonin: A novel and beneficial substance in sweet potatoes through selenium application. Food Chem 2025; 463:141509. [PMID: 39368196 DOI: 10.1016/j.foodchem.2024.141509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
The effects of foliar Se (selenium) fertilizer on melatonin and its biosynthesis in four different colored sweet potatoes were studied. Solutions containing 1.25 mg Se/plant of inorganic selenium (ISe) and organic selenium (OSe) and a control check (CK) were applied three times during the swelling stage. Except for ISe in purple variety, both types of Se applications significantly increased melatonin in four colored varieties. The effect of OSe was greater than that of ISe, mainly because of higher concentration of tryptophan and activities of tryptophan decarboxylase, tryptamine-5 hydroxylase, 5-hydroxytryptamine N-acetyltransferase and N-acetyl-5-hydroxytryptamine methyltransferase. The orange variety had highest melatonin with the application of ISe and OSe, and highest melatonin among all applications was achieved by OSe in orange variety, followed by OSe in purple variety. These findings revealed that melatonin with extremely strong health benefits could be found and significantly increased in sweet potatoes through Se applications.
Collapse
Affiliation(s)
- Xianghan Cheng
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China.
| | - Xuan Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Quan Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Taiji Kou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - WenBang Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Youjun Li
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
2
|
Aghdam MS, Arnao MB. Phytomelatonin: From Intracellular Signaling to Global Horticulture Market. J Pineal Res 2024; 76:e12990. [PMID: 39030989 DOI: 10.1111/jpi.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a well-known mammalian hormone, has been having a great relevance in the Plant World in recent years. Many of its physiological actions in plants are leading to possible features of agronomic interest, especially those related to improvements in tolerance to stressors and in the postharvest life of fruits and vegetables. Thus, through the exogenous application of melatonin or by modifying the endogenous biosynthesis of phytomelatonin, some change can be made in the functional levels of melatonin in tissues and their responses. Also, acting in the respective phytomelatonin biosynthesis enzymes, regulating the expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), N-acetylserotonin O-methyltransferase (ASMT), and caffeic acid O-methyltransferase (COMT), and recently the possible action of deacetylases on some intermediates offers promising opportunities for improving fruits and vegetables in postharvest and its marketability. Other regulators/effectors such as different transcription factors, protein kinases, phosphatases, miRNAs, protein-protein interactions, and some gasotransmitters such as nitric oxide or hydrogen sulfide were also considered in an exhaustive vision. Other interesting aspects such as the role of phytomelatonin in autophagic responses, the posttranslational reprogramming by protein-phosphorylation, ubiquitylation, SUMOylation, PARylation, persulfidation, and nitrosylation described in the phytomelatonin-mediated responses were also discussed, including the relationship of phytomelatonin and several plant hormones, for chilling injury and fungal decay alleviating. The current data about the phytomelatonin receptor in plants (CAND2/PMTR1), the effect of UV-B light and cold storage on the postharvest damage are presented and discussed. All this on the focus of a possible new action in the preservation of the quality of fruits and vegetables.
Collapse
Affiliation(s)
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
3
|
Chen ZJ, Li SY, Qu YN, Ai G, Wang YH, Pan DJ, Wang HW, Lu D, Liu XL. Comprehensive analyses show the enhancement effect of exogenous melatonin on fluroxypyr-meptyl multiple phase metabolisms in Oryza sativa for reducing environmental risks. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106021. [PMID: 39084780 DOI: 10.1016/j.pestbp.2024.106021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
The role of melatonin (MT), an essential phytohormone controlling the physiological and biochemical reactions of plants to biotic and abiotic stress, in alleviating pesticide phytotoxicity remains unclear. This study explores the effects of MT (0 and 200 mg/L) and six doses of fluroxypyr-meptyl (FLUME) (0-0.14 mg/L) on the physiological response of rice (Oryza sativa). FLUME exposure inhibited the growth of rice seedlings, with MT treatment ameliorating this effect. To determine the biochemical processes and catalytic events involved in FLUME breakdown in rice, six rice root and shoot libraries exposed to either FLUME or FLUME-MT were generated and then subjected to RNA-Seq-LC-Q-TOF-HRMS/MS analyses. The results showed that 1510 root genes and 139 shoot genes exhibited higher upregulation in plants treated with an ecologically realistic FLUME concentration and MT than in those treated with FLUME alone. Gene enrichment analysis revealed numerous FLUME-degradative enzymes operating in xenobiotic tolerance to environmental stress and molecular metabolism. Regarding the FLUME degradation process, certain differentially expressed genes were responsible for producing important enzymes, such as cytochrome P450, glycosyltransferases, and acetyltransferases. Four metabolites and ten conjugates in the pathways involving hydrolysis, malonylation, reduction, glycosylation, or acetylation were characterized using LC-Q-TOF-HRMS/MS to support FLUME-degradative metabolism. Overall, external application of MT can increase rice tolerance to FLUME-induced oxidative stress by reducing phytotoxicity and FLUME accumulation. This study provides insights into MT's role in facilitating FLUME degradation, with potential implications for engineering genotypes supporting FLUME degradation in paddy crops.
Collapse
Affiliation(s)
- Zhao Jie Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| | - Si Ying Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Ya Nan Qu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Gan Ai
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Hui Wang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dong Jin Pan
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Hao Wen Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Dan Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiao Liang Liu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
4
|
Muhammad I, Ahmad S, Shen W. Melatonin-Mediated Molecular Responses in Plants: Enhancing Stress Tolerance and Mitigating Environmental Challenges in Cereal Crop Production. Int J Mol Sci 2024; 25:4551. [PMID: 38674136 PMCID: PMC11049982 DOI: 10.3390/ijms25084551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cereal crops are crucial for global food security; however, they are susceptible to various environmental stresses that significantly hamper their productivity. In response, melatonin has emerged as a promising regulator, offering potential benefits for stress tolerance and crop growth. This review explores the effects of melatonin on maize, sorghum, millet, rice, barley, and wheat, aiming to enhance their resilience to stress. The application of melatonin has shown promising outcomes, improving water use efficiency and reducing transpiration rates in millet under drought stress conditions. Furthermore, it enhances the salinity and heavy metal tolerance of millet by regulating the activity of stress-responsive genes. Similarly, melatonin application in sorghum enhances its resistance to high temperatures, low humidity, and nutrient deficiency, potentially involving the modulation of antioxidant defense and aspects related to photosynthetic genes. Melatonin also exerts protective effects against drought, salinity, heavy metal, extreme temperatures, and waterlogging stresses in maize, wheat, rice, and barley crops by decreasing reactive oxygen species (ROS) production through regulating the antioxidant defense system. The molecular reactions of melatonin upregulated photosynthesis, antioxidant defense mechanisms, the metabolic pathway, and genes and downregulated stress susceptibility genes. In conclusion, melatonin serves as a versatile tool in cereal crops, bolstering stress resistance and promoting sustainable development. Further investigations are warranted to elucidate the underlying molecular mechanisms and refine application techniques to fully harness the potential role of melatonin in cereal crop production systems.
Collapse
Affiliation(s)
- Ihsan Muhammad
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China;
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China;
| |
Collapse
|
5
|
Bao Q, Bao Y, Shi J, Sun Y. Nano zero-valent iron and melatonin synergistically alters uptake and translocation of Cd and As in soil-rice system and mechanism in soil chemistry and microbiology. ENVIRONMENT INTERNATIONAL 2024; 185:108550. [PMID: 38452466 DOI: 10.1016/j.envint.2024.108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Nanoscale zero-valent iron (Fe) is a promising nanomaterial for remediating heavy metal-contaminated soils. Melatonin (MT) is essential to alleviate environmental stress in plants. However, the conjunction effects of Fe and MT (FeMT) on rice Cd, As accumulation and the mechanism of soil chemical and microbial factors interaction are unclear. Here, a pot experiment was conducted to evaluated the effects of the FeMT for rice Cd, As accumulation and underlying mechanisms. The findings showed that FeMT significantly reduced grains Cd by 92%-87% and As by over 90%, whereas improving grains Fe by over 213%. Soil available-Cd and iron plaques-Cd (extracted by dithionite-citrate-bicarbonate solution, DCB-Cd) significantly regulated roots Cd, thus affected Cd transport to grains. Soil pH significantly affected soil As and DCB-As, which further influenced roots As uptake and the transport to shoots and grains. The interactions between the soil bacterial community and soil Fe, available Fe, and DCB-Fe together affected root Fe absorption and transportation in rice. FeMT significantly influenced rhizosphere soil bacterial α- and β-diversity. Firmicutes as the dominant phylum exhibited a significant positive response to FeMT measure, and acted a key role in reducing soil Cd and As availability mainly by improving iron-manganese plaques. The increase of soil pH caused by FeMT was beneficial only for Actinobacteriota growth, which reduced Cd, As availability probably through complexation and adsorption. FeMT also showed greater potential in reducing human health and ecological risks by rice consumption and straw returning. These results showed the important role of both soil chemical and microbial factors in FeMT-mediated rice Cd, As reduction efficiency. This study opens a novel strategy for safe rice production and improvement of rice iron nutrition level in heavy-metals polluted soil, but also provides new insights into the intricate regulatory relationships among soil biochemistry, toxic elements, microorganism, and plants.
Collapse
Affiliation(s)
- Qiongli Bao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China.
| | - Yinrong Bao
- Agronomy College, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiahao Shi
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China
| |
Collapse
|
6
|
Mukherjee S, Roy S, Arnao MB. Nanovehicles for melatonin: a new journey for agriculture. TRENDS IN PLANT SCIENCE 2024; 29:232-248. [PMID: 38123438 DOI: 10.1016/j.tplants.2023.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
The important role of melatonin in plant growth and metabolism together with recent advances in the potential use of nanomaterials have opened up interesting applications in agriculture. Various nanovehicles have been explored as melatonin carriers in animals, and it is now important to explore their application in plants. Recent findings have substantiated the use of silicon and chitosan nanoparticles (NPs) in targeting melatonin to plant tissues. Although melatonin is an amphipathic molecule, nanocarriers can accelerate its uptake and transport to various plant organs, thereby relieving stress and improving plant shelf-life in the post-harvest stages. We review the scope and biosafety concerns of various nanomaterials to devise novel methods for melatonin application in crops and post-harvest products.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, West Bengal 742213, India
| | - Suchismita Roy
- Department for Cell and Molecular Medicine, University of California, San Diego, CA 92093, USA
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
7
|
Kudoyarova G. Special Issue "Phytohormones: Important Participators in Plant Growth and Development". Int J Mol Sci 2024; 25:1380. [PMID: 38338660 PMCID: PMC10855094 DOI: 10.3390/ijms25031380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The articles published in the IJMS Special Issue "Phytohormones" are devoted to various aspects of hormonal control of plant growth and development promoting adaptation to normal and stress conditions [...].
Collapse
Affiliation(s)
- Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Pr. Octyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
8
|
Xu L, Xue X, Yan Y, Zhao X, Li L, Sheng K, Zhang Z. Silicon Combined with Melatonin Reduces Cd Absorption and Translocation in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:3537. [PMID: 37896001 PMCID: PMC10609755 DOI: 10.3390/plants12203537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Cadmium (Cd) is one of the most toxic and widely distributed heavy metal pollutants, posing a huge threat to crop production, food security, and human health. Corn is an important food source and feed crop. Corn growth is subject to Cd stress; thus, reducing cadmium stress, absorption, and transportation is of great significance for achieving high yields, a high efficiency, and sustainable and safe corn production. The use of silicon or melatonin alone can reduce cadmium accumulation and toxicity in plants, but it is unclear whether the combination of silicon and melatonin can further reduce the damage caused by cadmium. Therefore, pot experiments were conducted to study the effects of melatonin and silicon on maize growth and cadmium accumulation. The results showed that cadmium stress significantly inhibited the growth of maize, disrupted its physiological processes, and led to cadmium accumulation in plants. Compared to the single treatment of silicon or melatonin, the combined application of melatonin and silicon significantly alleviated the inhibition of the growth of maize seedlings caused by cadmium stress. This was demonstrated by the increased plant heights, stem diameters, and characteristic root parameters and the bioaccumulation in maize seedlings. Under cadmium stress, the combined application of silicon and melatonin increased the plant height and stem diameter by 17.03% and 59.33%, respectively, and increased the total leaf area by 43.98%. The promotion of corn growth is related to the reduced oxidative damage under cadmium stress, manifested in decreases in the malondialdehyde content and relative conductivity and increases in antioxidant enzyme superoxide dismutase and guaiacol peroxidase activities, as well as in soluble protein and chlorophyll contents. In addition, cadmium accumulation in different parts of maize seedlings and the health risk index of cadmium were significantly reduced, reaching 48.44% (leaves), 19.15% (roots), and 20.86% (health risk index), respectively. Therefore, melatonin and silicon have a significant synergistic effect in inhibiting cadmium absorption and reducing the adverse effects of cadmium toxicity.
Collapse
Affiliation(s)
- Lina Xu
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Xing Xue
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Yan Yan
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Xiaotong Zhao
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Lijie Li
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Kun Sheng
- School of Hydraulic Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China;
| | - Zhiyong Zhang
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| |
Collapse
|
9
|
Leng XY, Zhao LX, Gao S, Ye F, Fu Y. Review on the Discovery of Novel Natural Herbicide Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466454 DOI: 10.1021/acs.jafc.3c03585] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The phytotoxicity of herbicides on crops is a major dilemma in agricultural production. Fortunately, the emergence of herbicide safeners is an excellent solution to this challenge, selectively enhancing the performance of herbicides in controlling weeds while reducing the phytotoxicity to crops. But owing to their potential toxicity, only a tiny proportion of safeners are commercially available. Natural products as safeners have been extensively explored, which are generally safe to mammals and cause little pollution to the environment. They are typically endogenous signal molecules or phytohormones, which are generally difficult to extract and synthesize, and exhibit relatively lower activity than commercial products. Therefore, it is necessary to adopt rational design approaches to modify the structure of natural safeners. This paper reviews the application, safener effects, structural characteristics, and modifications of natural safeners and provides insights on the discovery of natural products as potential safeners in the future.
Collapse
Affiliation(s)
- Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
10
|
Colombage R, Singh MB, Bhalla PL. Melatonin and Abiotic Stress Tolerance in Crop Plants. Int J Mol Sci 2023; 24:7447. [PMID: 37108609 PMCID: PMC10138880 DOI: 10.3390/ijms24087447] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Increasing food demand by the growing human population and declining crop productivity due to climate change affect global food security. To meet the challenges, developing improved crops that can tolerate abiotic stresses is a priority. Melatonin in plants, also known as phytomelatonin, is an active component of the various cellular mechanisms that alleviates oxidative damage in plants, hence supporting the plant to survive abiotic stress conditions. Exogenous melatonin strengthens this defence mechanism by enhancing the detoxification of reactive by-products, promoting physiological activities, and upregulating stress-responsive genes to alleviate damage during abiotic stress. In addition to its well-known antioxidant activity, melatonin protects against abiotic stress by regulating plant hormones, activating ER stress-responsive genes, and increasing protein homoeostasis, heat shock transcription factors and heat shock proteins. Under abiotic stress, melatonin enhances the unfolded protein response, endoplasmic reticulum-associated protein degradation, and autophagy, which ultimately protect cells from programmed cell death and promotes cell repair resulting in increased plant survival.
Collapse
Affiliation(s)
| | | | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (R.C.); (M.B.S.)
| |
Collapse
|
11
|
Melatonin Treatments Reduce Chilling Injury and Delay Ripening, Leading to Maintenance of Quality in Cherimoya Fruit. Int J Mol Sci 2023; 24:ijms24043787. [PMID: 36835199 PMCID: PMC9960509 DOI: 10.3390/ijms24043787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Spain is the world's leading producer of cherimoya, a climacteric fruit highly appreciated by consumers. However, this fruit species is very sensitive to chilling injury (CI), which limits its storage. In the present experiments, the effects of melatonin applied as dipping treatment on cherimoya fruit CI, postharvest ripening and quality properties were evaluated during storage at 7 °C + 2 days at 20 °C. The results showed that melatonin treatments (0.01, 0.05, 0.1 mM) delayed CI, ion leakage, chlorophyll losses and the increases in total phenolic content and hydrophilic and lipophilic antioxidant activities in cherimoya peel for 2 weeks with respect to controls. In addition, the increases in total soluble solids and titratable acidity in flesh tissue were also delayed in melatonin-treated fruit, and there was also reduced firmness loss compared with the control, the highest effects being found for the 0.05 mM dose. This treatment led to maintenance of fruit quality traits and to increases in the storage time up to 21 days, 14 days more than the control fruit. Thus, melatonin treatment, especially at 0.05 mM concentration, could be a useful tool to decrease CI damage in cherimoya fruit, with additional effects on retarding postharvest ripening and senescence processes and on maintaining quality parameters. These effects were attributed to a delay in the climacteric ethylene production, which was delayed for 1, 2 and 3 weeks for 0.01, 0.1 and 0.05 mM doses, respectively. However, the effects of melatonin on gene expression and the activity of the enzymes involved in ethylene production deserves further research.
Collapse
|
12
|
Hernández-Ruiz J, Giraldo-Acosta M, El Mihyaoui A, Cano A, Arnao MB. Melatonin as a Possible Natural Anti-Viral Compound in Plant Biocontrol. PLANTS (BASEL, SWITZERLAND) 2023; 12:781. [PMID: 36840129 PMCID: PMC9961163 DOI: 10.3390/plants12040781] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Melatonin is a multifunctional and ubiquitous molecule. In animals, melatonin is a hormone that is involved in a wide range of physiological activities and is also an excellent antioxidant. In plants, it has been considered a master regulator of multiple physiological processes as well as of hormonal homeostasis. Likewise, it is known for its role as a protective biomolecule and activator of tolerance and resistance against biotic and abiotic stress in plants. Since infections by pathogens such as bacteria, fungi and viruses in crops result in large economic losses, interest has been aroused in determining whether melatonin plays a relevant role in plant defense systems against pathogens in general, and against viruses in particular. Currently, several strategies have been applied to combat infection by pathogens, one of them is the use of eco-friendly chemical compounds that induce systemic resistance. Few studies have addressed the use of melatonin as a biocontrol agent for plant diseases caused by viruses. Exogenous melatonin treatments have been used to reduce the incidence of several virus diseases, reducing symptoms, virus titer, and even eradicating the proliferation of viruses such as Tobacco Mosaic Virus, Apple Stem Grooving Virus, Rice Stripe Virus and Alfalfa Mosaic Virus in tomato, apple, rice and eggplant, respectively. The possibilities of using melatonin as a possible natural virus biocontrol agent are discussed.
Collapse
|
13
|
Peng X, Wang N, Sun S, Geng L, Guo N, Liu A, Chen S, Ahammed GJ. Reactive oxygen species signaling is involved in melatonin-induced reduction of chlorothalonil residue in tomato leaves. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130212. [PMID: 36308936 DOI: 10.1016/j.jhazmat.2022.130212] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pesticide overuse has led to serious global concerns regarding food safety and environmental pollution. Although the reduction of pesticide residue is critical, our knowledge about induced pesticide metabolism in plants remains fragmentary. Melatonin (N-acetyl-5-methoxytryptamine) is an effective stress-relieving agent in both animals and plants, but little is known about the melatonin signaling mechanism and its effect on pesticide metabolism in plants. Here, we found that exogenous melatonin treatment significantly reduced chlorothalonil residue by 41 % but suppression of endogenous melatonin accumulation increased chlorothalonil residue in tomato leaves. Moreover, melatonin increased photosynthesis, Fv/Fm, Calvin cycle enzyme activity, antioxidant enzyme activity, glutathione pool, and RESPIRATORY BURST HOMOLOG1 (RBOH1) expression in tomato leaves. However, the upregulation of RBOH1, CYP724B2, GST1, GST2, GSH and ABC, the increased glutathione concentrations and the activity of detoxification enzymes due to melatonin treatment were all significantly attenuated by the treatment with an NADPH oxidase inhibitor and a ROS scavenger, indicating a clear relationship between the reduction of pesticide residue and induction in detoxifying enzymes and genes upon melatonin treatment in an apoplastic H2O2-dependent manner. These results reveal that melatonin-induced reduction in chlorothalonil residue is mediated by H2O2 signaling in tomato leaves.
Collapse
Affiliation(s)
- Xiaohua Peng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Nannan Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Shuangsheng Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Lijiahong Geng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Ning Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop safety and Disease Control, Luoyang 471023, PR China.
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop safety and Disease Control, Luoyang 471023, PR China.
| |
Collapse
|
14
|
Deng X. A Mini Review on Natural Safeners: Chemistry, Uses, Modes of Action, and Limitations. PLANTS (BASEL, SWITZERLAND) 2022; 11:3509. [PMID: 36559620 PMCID: PMC9784830 DOI: 10.3390/plants11243509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Herbicide injury is a common problem during the application of herbicides in practice. However, applying herbicide safeners can avoid herbicide damage. Safeners selectively protect crops against herbicide injury without affecting the biological activity of herbicides against the target weeds. However, after long-term application, commercial safeners were found to pose risks to the agricultural ecological environment. Natural safeners are endogenous compounds from animals, plants, and microbes, with unique structures and are relatively environment-friendly, and thus can address the potential risks of commercial safeners. This paper summarizes the current progress of the discovery methods, structures, uses, and modes of action of natural safeners. This study also concludes the limitations of natural safeners and prospects the future research directions, offering guidance for the practical application of natural safeners to prevent herbicide injury. This study will also guide the research and development of corresponding products.
Collapse
Affiliation(s)
- Xile Deng
- Key Laboratory for Biology and Control of Weeds, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No. 2 Yuanda Road, Changsha 410125, China
| |
Collapse
|
15
|
Arnao MB, Hernández-Ruiz J, Cano A. Role of Melatonin and Nitrogen Metabolism in Plants: Implications under Nitrogen-Excess or Nitrogen-Low. Int J Mol Sci 2022; 23:ijms232315217. [PMID: 36499543 PMCID: PMC9741234 DOI: 10.3390/ijms232315217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a new plant hormone involved in multiple physiological functions in plants such as germination, photosynthesis, plant growth, flowering, fruiting, and senescence, among others. Its protective role in different stress situations, both biotic and abiotic, has been widely demonstrated. Melatonin regulates several routes in primary and secondary plant metabolism through the up/down-regulation of many enzyme/factor genes. Many of the steps of nitrogen metabolism in plants are also regulated by melatonin and are presented in this review. In addition, the ability of melatonin to enhance nitrogen uptake under nitrogen-excess or nitrogen-low conditions is analyzed. A model that summarizes the distribution of nitrogen compounds, and the osmoregulation and redox network responses mediated by melatonin, are presented. The possibilities of using melatonin in crops for more efficient uptake, the assimilation and metabolization of nitrogen from soil, and the implications for Nitrogen Use Efficiency strategies to improve crop yield are also discussed.
Collapse
|
16
|
Exogenous Application of Melatonin to Green Horn Pepper Fruit Reduces Chilling Injury during Postharvest Cold Storage by Regulating Enzymatic Activities in the Antioxidant System. PLANTS 2022; 11:plants11182367. [PMID: 36145768 PMCID: PMC9505764 DOI: 10.3390/plants11182367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Chilling injury (CI) caused by exposure to low temperatures is a serious problem in the postharvest cold storage of pepper fruit. Melatonin (MT) has been reported to minimize CI in several plants. To evaluate the effectiveness of MT to minimize CI in green horn pepper and the possible mechanism involved, freshly picked green horn peppers were treated with MT solution at 100 μmol L−1 or water and then stored at 4 °C for 25 d. Results showed that MT treatment reduced CI in green horn pepper fruit, as evidenced by lower CI rate and CI index. MT treatment maintained lower postharvest metabolism rate and higher fruit quality of green horn peppers, as shown by reduced weight loss and respiratory rate, maintened fruit firmness and higher contents of chlorophyll, total phenols, flavonoids, total soluble solids and ATP. Additionally, the contents of hydrogen peroxide, superoxide radical, and malondialdehyde were kept low in the MT-treated fruit, and the activities of the enzymes peroxidase, superoxide dismutase, and catalase were significantly elevated. Similarly, the ascorbate–glutathione cycle was enhanced by elevating the activities of ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase, to increase the regeneration of ascorbic acid and glutathione. Our results show that MT treatment protected green horn pepper fruit from CI and maintained high fruit quality during cold storage by triggering the antioxidant system
Collapse
|
17
|
Sun H, Wang XQ, Zeng ZL, Yang YJ, Huang W. Exogenous melatonin strongly affects dynamic photosynthesis and enhances water-water cycle in tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:917784. [PMID: 35991431 PMCID: PMC9381976 DOI: 10.3389/fpls.2022.917784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 06/09/2023]
Abstract
Melatonin (MT), an important phytohormone synthesized naturally, was recently used to improve plant resistance against abiotic and biotic stresses. However, the effects of exogenous melatonin on photosynthetic performances have not yet been well clarified. We found that spraying of exogenous melatonin (100 μM) to leaves slightly affected the steady state values of CO2 assimilation rate (A N ), stomatal conductance (g s ) and mesophyll conductance (g m ) under high light in tobacco leaves. However, this exogenous melatonin strongly delayed the induction kinetics of g s and g m , leading to the slower induction speed of A N . During photosynthetic induction, A N is mainly limited by biochemistry in the absence of exogenous melatonin, but by CO2 diffusion conductance in the presence of exogenous melatonin. Therefore, exogenous melatonin can aggravate photosynthetic carbon loss during photosynthetic induction and should be used with care for crop plants grown under natural fluctuating light. Within the first 10 min after transition from low to high light, photosynthetic electron transport rates (ETR) for A N and photorespiration were suppressed in the presence of exogenous melatonin. Meanwhile, an important alternative electron sink, namely water-water cycle, was enhanced to dissipate excess light energy. These results indicate that exogenous melatonin upregulates water-water cycle to facilitate photoprotection. Taking together, this study is the first to demonstrate that exogenous melatonin inhibits dynamic photosynthesis and improves photoprotection in higher plants.
Collapse
Affiliation(s)
- Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|