1
|
Bu A, Yao G, Zhou C, Mao Z, Liu B, Ma J, Fang X, Liu D, Ye Z. Effect of AC electric field on enhancing phytoremediation of Cd-contaminated soils in different pH soils. Sci Rep 2024; 14:18035. [PMID: 39098964 PMCID: PMC11298512 DOI: 10.1038/s41598-024-68671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
To increase the efficiency of phytoremediation to clean up heavy metals in soil, assisted with alternating current (AC) electric field technology is a promising choice. Our experiments utilized the hyperaccumulator Sedum alfredii Hance and the fast-growing, high-biomass willow (Salix sp.). We investigated the efficiency of AC field combined with S. alfredii-willow intercropping for removing Cd from soils with different pH values. In the AC electric field treatment with S. alfredii-willow intercropping, the available Cd content in acidic soil increased by 50.00% compared to the control, and in alkaline soil, the increase was 100.00%. Furthermore, AC electric field promoted Cd uptake by plants in both acidic and alkaline soils, with Cd accumulation in the aboveground increased by 20.52% (P < 0.05) and 11.73%, respectively. In conclusion, the integration of AC electric fields with phytoremediation demonstrates significant favorable effectiveness.
Collapse
Affiliation(s)
- Aiai Bu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Guihua Yao
- Jiashan County Agricultural and Rural Burean, Zhejiang, 314000, Jiaxing, China
| | - Chuikang Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Zhansheng Mao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Bo Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Jiawei Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Xianzhi Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Dan Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Zhengqian Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China.
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China.
| |
Collapse
|
2
|
Liu Z, Lu Q, Zhao Y, Wei J, Liu M, Duan X, Lin M. Ameliorating Effects of Graphene Oxide on Cadmium Accumulation and Eco-Physiological Characteristics in a Greening Hyperaccumulator ( Lonicera japonica Thunb.). PLANTS (BASEL, SWITZERLAND) 2023; 13:19. [PMID: 38202327 PMCID: PMC10780341 DOI: 10.3390/plants13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Graphene oxide (GO), as a novel carbon-based nanomaterial (CBN), has been widely applied to every respect of social life due to its unique composite properties. The widespread use of GO inevitably promotes its interaction with heavy metal cadmium (Cd), and influences its functional behavior. However, little information is available on the effects of GO on greening hyperaccumulators under co-occurring Cd. In this study, we chose a typical greening hyperaccumulator (Lonicera japonica Thunb.) to show the effect of GO on Cd accumulation, growth, net photosynthesis rate (Pn), carbon sequestration and oxygen release functions of the plant under Cd stress. The different GO-Cd treatments were set up by (0, 10, 50 and 100 mg L-1) GO and (0, 5 and 25 mg L-1) Cd in solution culture. The maximum rate of Cd accumulation in the roots and shoots of the plant were increased by 10 mg L-1 GO (exposed to 5 mg L-1 Cd), indicating that low-concentration GO (10 mg L-1) combined with low-concentration Cd (5 mg L-1) might stimulate the absorption of Cd by L. japonica. Under GO treatments without Cd, the dry weight of root and shoot biomass, Pn value, carbon sequestration per unit leaf area and oxygen release per unit leaf area all increased in various degrees, especially under 10 mg L-1 GO, were 20.67%, 12.04%, 35% and 28.73% higher than the control. Under GO-Cd treatments, it is observed that the cooperation of low-concentration GO (10 mg L-1) and low-concentration Cd (5 mg L-1) could significantly stimulate Cd accumulation, growth, photosynthesis, carbon sequestration and oxygen release functions of the plant. These results indicated that suitable concentrations of GO could significantly alleviate the effects of Cd on L. japonica, which is helpful for expanding the phytoremediation application of greening hyperaccumulators faced with coexistence with environment of nanomaterials and heavy metals.
Collapse
Affiliation(s)
- Zhouli Liu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Qingxuan Lu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Yi Zhao
- School of Chemistry and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Jianbing Wei
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Miao Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Xiangbo Duan
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Maosen Lin
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
3
|
Liu Z, An J, Lu Q, Yang C, Mu Y, Wei J, Hou Y, Meng X, Zhao Z, Lin M. Effects of Cadmium Stress on Carbon Sequestration and Oxygen Release Characteristics in A Landscaping Hyperaccumulator- Lonicera japonica Thunb. PLANTS (BASEL, SWITZERLAND) 2023; 12:2689. [PMID: 37514303 PMCID: PMC10385468 DOI: 10.3390/plants12142689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The carbon sequestration and oxygen release of landscape plants are dominant ecological service functions, which can play an important role in reducing greenhouse gases, improving the urban heat island effect and achieving carbon peaking and carbon neutrality. In the present study, we are choosing Lonicera japonica Thunb. as a model plant to show the effects of Cd stress on growth, photosynthesis, carbon sequestration and oxygen release characteristics. Under 5 mg kg-1 of Cd treatment, the dry weight of roots and shoots biomass and the net photosynthetic rate (PN) in L. japonica had a significant increase, and with the increase in Cd treatment concentration, the dry weight of roots and shoots biomass and PN in the plant began to decrease. When the Cd treatment concentration was up to 125 mg kg-1, the dry weight of root and shoots biomass and PN in the plant decreased by 5.29%, 1.94% and 2.06%, and they had no significant decrease compared with the control, indicating that the plant still had a good ability for growth and photoenergy utilization even under high concentrations of Cd stress. The carbon sequestration and oxygen release functions in terms of diurnal assimilation amounts (P), carbon sequestration per unit leaf area (WCO2), oxygen release per unit leaf area (WO2), carbon sequestration per unit land area (PCO2) and oxygen release per unit land area (PO2) in L. japonica had a similar change trend with the photosynthesis responses under different concentrations of Cd treatments, which indicated that L. japonica as a landscaping Cd-hyperaccumulator, has a good ability for carbon sequestration and oxygen release even under high concentrations of Cd stress. The present study will provide a useful guideline for effectively developing the ecological service functions of landscaping hyperaccumulators under urban Cd-contaminated environment.
Collapse
Affiliation(s)
- Zhouli Liu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qingxuan Lu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Chuanjia Yang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Yitao Mu
- College of Municipal and Environmental Engineering, Shenyang Urban Construction University, Shenyang 110167, China
| | - Jianbing Wei
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Yongxia Hou
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Xiangyu Meng
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Zhuo Zhao
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Maosen Lin
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
4
|
Liu Z, Tian L, Chen M, Zhang L, Lu Q, Wei J, Duan X. Hormesis Responses of Growth and Photosynthetic Characteristics in Lonicera japonica Thunb. to Cadmium Stress: Whether Electric Field Can Improve or Not? PLANTS (BASEL, SWITZERLAND) 2023; 12:933. [PMID: 36840281 PMCID: PMC9960363 DOI: 10.3390/plants12040933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
"Hormesis" is considered a dose-response phenomenon mainly observed at hyperaccumulator plants under heavy metals stress. In this study, the effects of electric fields on hormesis responses in Lonicera japonica Thunb. under cadmium (Cd) treatments were investigated by assessing the plant growth and photosynthetic characteristics. Under Cd treatments without electric fields, the parameters of plant growth and photosynthetic characteristics increased significantly when exposed to 5 mg L-1 Cd, and decreased slightly when exposed to 25 mg L-1 Cd, showing an inverted U-shaped trend, which confirmed that low concentration Cd has a hormesis effect on L. japonica. Under electric fields, different voltages significantly promoted the inverted U-shaped trend of the hormesis effect on the plant, especially by 2 V cm-1 voltage. Under 2 V cm-1 voltage, the dry weight of the root and leaf biomass exposed to 5 mg L-1 Cd increased significantly by 38.38% and 42.14%, and the photosynthetic pigment contents and photosynthetic parameters were also increased significantly relative to the control, indicating that a suitable electric field provides better improvements for the hormesis responses of the plant under Cd treatments. The synergistic benefits of the 5 mg L-1 Cd and 2 V cm-1 electric field in terms of the enhanced hormesis responses of growth and photosynthetic characteristics could contribute to the promoted application of electro-phytotechnology.
Collapse
Affiliation(s)
- Zhouli Liu
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Mengdi Chen
- Academy of Forest and Grassland Inventory and Planning of National Forestry and Grassland Administration, Beijing 100714, China
| | - Luhua Zhang
- State Owned Ying’emen Forest Farm of Qingyuan Manchu Autonomous County, Fushun 113306, China
| | - Qingxuan Lu
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Jianbing Wei
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Xiangbo Duan
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| |
Collapse
|