1
|
Xue H, Jaenisch J, Sasse J, McGarrigle ER, Choi EH, Louie K, Gutbrod K, Dörmann P, Northen TR, Wildermuth MC. Powdery mildew induces chloroplast storage lipid formation at the expense of host thylakoids to promote spore production. THE PLANT CELL 2025; 37:koaf041. [PMID: 40037697 PMCID: PMC11912149 DOI: 10.1093/plcell/koaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 11/13/2024] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Powdery mildews are obligate biotrophic fungi that manipulate plant metabolism to supply lipids to the fungus, particularly during fungal asexual reproduction when lipid demand is high. We found levels of leaf storage lipids (triacylglycerols, TAGs) are 3.5-fold higher in whole Arabidopsis (Arabidopsis thaliana) leaves with a 15-fold increase in storage lipids at the infection site during fungal asexual reproduction. Lipid bodies, not observable in uninfected mature leaves, were found in and external to chloroplasts in mesophyll cells underlying the fungal feeding structure. Concomitantly, thylakoid disassembly occurred and thylakoid membrane lipid levels decreased. Genetic analyses showed that canonical endoplasmic reticulum TAG biosynthesis does not support powdery mildew spore production. Instead, Arabidopsis chloroplast-localized DIACYLGLYCEROL ACYLTRANSFERASE 3 (DGAT3) promoted fungal asexual reproduction. Consistent with the reported AtDGAT3 preference for 18:3 and 18:2 acyl substrates, which are dominant in thylakoid membrane lipids, dgat3 mutants exhibited a dramatic reduction in powdery mildew-induced chloroplast TAGs, attributable to decreases in TAG species largely comprised of 18:3 and 18:2 acyl substrates. This pathway for TAG biosynthesis in the chloroplast at the expense of thylakoids provides insights into obligate biotrophy and plant lipid metabolism, plasticity, and function. By understanding how photosynthetically active leaves can be converted into TAG producers, more sustainable and environmentally friendly plant oil production may be developed.
Collapse
Affiliation(s)
- Hang Xue
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Johan Jaenisch
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Joelle Sasse
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - E Riley McGarrigle
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Emma H Choi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Katherine Louie
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mary C Wildermuth
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Weselake RJ, Fell DA, Wang X, Scofield S, Chen G, Harwood JL. Increasing oil content in Brassica oilseed species. Prog Lipid Res 2024; 96:101306. [PMID: 39566857 DOI: 10.1016/j.plipres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Brassica oilseed species are the third most important in the world, providing approximately 15 % of the total vegetable oils. Three species (Brassica rapa, B. juncea, B. napus) dominate with B. napus being the most common in Canada, China and Europe. Originally, B. napus was a crop producing seed with high erucic acid content, which still persists today, to some extent, and is used for industrial purposes. In contrast, cultivars which produce seed used for food and feed are low erucic acid cultivars which also have reduced glucosinolate content. Because of the limit to agricultural land, recent efforts have been made to increase productivity of oil crops, including Brassica oilseed species. In this article, we have detailed research in this regard. We have covered modern genetic, genomic and metabolic control analysis approaches to identifying potential targets for the manipulation of seed oil content. Details of work on the use of quantitative trait loci, genome-wide association and comparative functional genomics to highlight factors influencing seed oil accumulation are given and functional proteins which can affect this process are discussed. In summary, a wide variety of inputs are proving useful for the improvement of Brassica oilseed species, as major sources of global vegetable oil.
Collapse
Affiliation(s)
- Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - David A Fell
- Department of Biological and Molecular Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xiaoyu Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
3
|
Nie J, Ma W, Ma X, Zhu D, Li X, Wang C, Xu G, Chen C, Luo D, Xie S, Hu G, Chen P. Integrated Transcriptomic and Metabolomic Analysis Reveal the Dynamic Process of Bama Hemp Seed Development and the Accumulation Mechanism of α-Linolenic Acid and Linoleic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10862-10878. [PMID: 38712687 DOI: 10.1021/acs.jafc.3c09309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Bama County is a world-famous longevity county in the Guangxi Province, China. Bama hemp is a traditional seed used in hemp cultivation in the Bama County. The seeds contain abundant unsaturated fatty acids, particularly linoleic acid (LA) and linolenic acid in the golden ratio. These two substances have been proven to be related to human health and the prevention of various diseases. However, the seed development and seed oil accumulation mechanisms remain unclear. This study employed a combined analysis of physiological, transcriptomic, and metabolomic parameters to elucidate the fatty acid formation patterns in Bama hemp seeds throughout development. We found that seed oil accumulated at a late stage in embryo development, with seed oil accumulation following an "S″-shaped growth curve, and positively correlated with seed size, sugar content, protein content, and starch content. Transcriptome analysis identified genes related to the metabolism of LA, α-linolenic acid (ALA), and jasmonic acid (JA). We found that the FAD2 gene was upregulated 165.26 folds and the FAD3 gene was downregulated 6.15 folds at day 21. Metabolomic changes in LA, ALA, and JA compounds suggested a competitive relationship among these substances. Our findings indicate that the peak period of substance accumulation and nutrient accumulation in Bama hemp seeds occurs during the midstage of seed development (day 21) rather than in the late stage (day 40). The results of this research will provide a theoretical basis for local cultivation and deep processing of Bama hemp.
Collapse
Affiliation(s)
- Jingzhi Nie
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning 530004, PR China
| | - Wenyue Ma
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning 530004, PR China
| | - Xueyuan Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xin Li
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning 530004, PR China
| | - Caijin Wang
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning 530004, PR China
| | - Guofeng Xu
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning 530004, PR China
| | - Canni Chen
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning 530004, PR China
| | - Dengjie Luo
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning 530004, PR China
| | - Sichen Xie
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning 530004, PR China
| | - Guanjing Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Peng Chen
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning 530004, PR China
| |
Collapse
|
4
|
Yan B, Chang C, Gu Y, Zheng N, Fang Y, Zhang M, Wang G, Zhang L. Genome-Wide Identification, Classification, and Expression Analyses of the CsDGAT Gene Family in Cannabis sativa L. and Their Response to Cold Treatment. Int J Mol Sci 2023; 24:ijms24044078. [PMID: 36835488 PMCID: PMC9963917 DOI: 10.3390/ijms24044078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Hempseed is a nutrient-rich natural resource, and high levels of hempseed oil accumulate within hemp seeds, consisting primarily of different triglycerides. Members of the diacylglycerol acyltransferase (DGAT) enzyme family play critical roles in catalyzing triacylglycerol biosynthesis in plants, often governing the rate-limiting step in this process. As such, this study was designed to characterize the Cannabis sativa DGAT (CsDGAT) gene family in detail. Genomic analyses of the C. sativa revealed 10 candidate DGAT genes that were classified into four families (DGAT1, DGAT2, DGAT3, WS/DGAT) based on the features of different isoforms. Members of the CsDGAT family were found to be associated with large numbers of cis-acting promoter elements, including plant response elements, plant hormone response elements, light response elements, and stress response elements, suggesting roles for these genes in key processes such as development, environmental adaptation, and abiotic stress responses. Profiling of these genes in various tissues and varieties revealed varying spatial patterns of CsDGAT expression dynamics and differences in expression among C. sativa varieties, suggesting that the members of this gene family likely play distinct functional regulatory functions CsDGAT genes were upregulated in response to cold stress, and significant differences in the mode of regulation were observed when comparing roots and leaves, indicating that CsDGAT genes may play positive roles as regulators of cold responses in hemp while also playing distinct roles in shaping the responses of different parts of hemp seedlings to cold exposure. These data provide a robust basis for further functional studies of this gene family, supporting future efforts to screen the significance of CsDGAT candidate genes to validate their functions to improve hempseed oil composition.
Collapse
Affiliation(s)
- Bowei Yan
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Chuanyi Chang
- Harbin Academy of Agricultural Science, Harbin 150028, China
| | - Yingnan Gu
- Remote Sensing Technique Center, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Nan Zheng
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Yuyan Fang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Ming Zhang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Guijiang Wang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Correspondence: (G.W.); (L.Z.)
| | - Liguo Zhang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Correspondence: (G.W.); (L.Z.)
| |
Collapse
|
5
|
Arjmand MP, Lahiji HS, Golfazani MM, Biglouei MH. New insights on the regulatory network of drought-responsive key genes in Arabidopsis thaliana. Genetica 2023; 151:29-45. [PMID: 36474134 DOI: 10.1007/s10709-022-00177-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Drought stress is complex abiotic stress that seriously affects crop productivity and yield. Many genes with various functions are induced in response to drought stress. The present study aimed to identify drought-responsive hub genes and their related regulation network in Arabidopsis thaliana under drought stress. In this study, RNA-sequencing data of well-watered and drought treatment samples of Arabidopsis were analyzed, and differential expression genes were identified. The gene ontology enrichment and protein-protein interaction network analyses were performed for differential expression genes. Then, the most important hub genes, gene ontology enrichment, co-expression network, and prediction of related miRNAs of hub genes were investigated by in silico approaches. A total of 2462 genes were expressed differentially, of which 1926 transcripts were up-regulated under drought stress, and the rest were down-regulated. WRKY33, WRKY40, AT1G19020, STZ, SYP122, CNI1, CML37, BCS1, AT3G02840, and AT5G54490 were identified as hub genes in drought stress. The gene ontology analysis showed that hub genes significantly enriched in response to hypoxia, chitin, wounding, and salicylic acid-mediated signaling pathway. The hub genes were co-expressed with important drought-responsive genes such as WRKY46, WRKY60, CML38, ERF6, ERF104, and ERF1A. They were regulated by many stress-responsive miRNAs, such as ath-miR5021, miR413, miR5998, and miR162, that could be used as candidate miRNAs for regulating key genes under drought stress. It seems that the regulation network was involved in signaling pathways and protein degradation under drought stress, and it consists of several important genes and miRNAs that are potential candidates for plant improvement and breeding programs.
Collapse
Affiliation(s)
- Maryam Pasandideh Arjmand
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | | | - Mohammad Hassan Biglouei
- Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|