1
|
Srivastava AK, Kumari S, Singh RP, Khan M, Mishra P, Xie X. Harnessing the interplay of protein posttranslational modifications: Enhancing plant resilience to heavy metal toxicity. Microbiol Res 2025; 295:128112. [PMID: 40015082 DOI: 10.1016/j.micres.2025.128112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/09/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Heavy metals (HMs) toxicity finds substantial plant health risk, affecting germination, growth, productivity, and survival. HMs exposure can interrupt cellular function, increase oxidative stress and affect physiological processes. Plants have developed array of adaptive responses, with proteins playing key role in detecting, signalling, and mitigating metal-induced stress. Under stress, posttranslational modifications, including phosphorylation, ubiquitination, glycosylation and acetylation, are essential regulators of protein stability, localization, and function. This review examines the comprehensive profiling of PTMs in HMs stress responses, including how PTMs regulate the signalling pathways, degradation pathways, and TFs modulation. Specifically, discuss the role of phosphorylation, ubiquitination, and sumoylation, neddylation, lipidation, and S-nitrosylation in specifically under HMs stress with PTMs regulation of antioxidant enzymes, stress proteins, metal transporters and chelators of detoxification. This review illustrates the crosstalk of PTMs to show how synergistic interactions regulate protein stability, activity, and localization upon HMs stress. In cross talk, ubiquitination often starts from phosphorylation to subsequent degradation of proteins in a timely and reversible way to trigger stress responses. However, sumoylation stabilizes key transcription factors that are rapidly dephosphorylated and integral in metal detoxification, form a synergistic combination with phosphorylation to maintain their activity. It explains the future research directions, focusing on PTM engineering to generate stress tolerant plant varieties. By studying the response of plants to HMs stress through PTMs, emphasizes the relevance of PTMs towards plant resilience and advocates for systems biology integrative approach to advancing plant stress biology.
Collapse
Affiliation(s)
- Atul Kumar Srivastava
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Simpal Kumari
- Department of Microbiology, Faculty of Science and Technology, Dr. Shakuntala Misra National Rehabilitation University, Lucknow 226017, India
| | - Raghvendra Pratap Singh
- Department of Biotechnology, R&I, Uttaranchal University, Dehradun 48007, India; Azoth Biotech Pvt. Ltd., Noida 201306, India
| | - Mehran Khan
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Pooja Mishra
- Crop Protection Division, CSIR-Central Institute of Medicinal Aromatic Plants, Lucknow 226015, India
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Zhang L, Yu Q, Yin X, Liu L, Ren Z, Fang Z, Shen W, Liu S, Liu B. Changes in the Stress Response and Fitness of Hybrids Between Transgenic Soybean and Wild-Type Plants Under Heat Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:622. [PMID: 40006881 PMCID: PMC11860058 DOI: 10.3390/plants14040622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Understanding the ability of hybrids of genetically modified (GM) soybean and wild soybean to survive and reproduce under unfavorable conditions is critical for answering questions regarding risk assessment and the existence of transgenes in the environment. To investigate the effects of high-temperature stress on soybean growth and competitive ability, the GM soybean DBN8002, which expresses the VIP3Aa and PAT proteins, and F2 generations derived from a cross between GM soybean and NJW (wild soybean) were placed in a greenhouse with an elevated temperature (38/32 °C) for 14 days, and the plant agronomic performance and foreign protein levels of hybrid soybean were evaluated to observe their responses to high temperature. The results revealed that the VIP3Aa and PAT protein levels in F2 and GM were not influenced by high-temperature stress. In contrast, the pollen germination, pod number, hundred-seed weight, and seed vigor of the F2 hybrid and parent soybean plants decreased after high-temperature stress. However, except for the number of fully filled seeds per plant, the above parameters of the F2 hybrid were similar to or slightly lower than those of wild soybean, and no significant difference in fitness was observed between the F2 hybrid and wild soybean, indicating that the growth and competitive ability of the hybrid were similar to those of its female parent under heat stress conditions, resulting in the transgenes persisting and spreading within agricultural ecosystems. Our results enhance the understanding of the GM soybean plant's response to heat stress, lay the foundation for breeding heat-resistant soybean varieties, and provide new insights and advanced information on the ecological risks arising from the escape of transgenes.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory on Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (L.Z.); (Q.Y.); (X.Y.); (L.L.); (Z.R.); (Z.F.); (W.S.)
| | - Qi Yu
- Key Laboratory on Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (L.Z.); (Q.Y.); (X.Y.); (L.L.); (Z.R.); (Z.F.); (W.S.)
| | - Xin Yin
- Key Laboratory on Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (L.Z.); (Q.Y.); (X.Y.); (L.L.); (Z.R.); (Z.F.); (W.S.)
| | - Laipan Liu
- Key Laboratory on Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (L.Z.); (Q.Y.); (X.Y.); (L.L.); (Z.R.); (Z.F.); (W.S.)
| | - Zhentao Ren
- Key Laboratory on Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (L.Z.); (Q.Y.); (X.Y.); (L.L.); (Z.R.); (Z.F.); (W.S.)
| | - Zhixiang Fang
- Key Laboratory on Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (L.Z.); (Q.Y.); (X.Y.); (L.L.); (Z.R.); (Z.F.); (W.S.)
| | - Wenjing Shen
- Key Laboratory on Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (L.Z.); (Q.Y.); (X.Y.); (L.L.); (Z.R.); (Z.F.); (W.S.)
| | - Shengnan Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Biao Liu
- Key Laboratory on Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (L.Z.); (Q.Y.); (X.Y.); (L.L.); (Z.R.); (Z.F.); (W.S.)
| |
Collapse
|
3
|
Yang B, Yang L, Kang L, You L, Chen H, Xiao H, Qian L, Rao Y, Liu Z. Integrated analysis of BSA-seq and RNA-seq identified the candidate genes for seed weight in Brassica juncea. FRONTIERS IN PLANT SCIENCE 2024; 15:1458294. [PMID: 39698460 PMCID: PMC11654836 DOI: 10.3389/fpls.2024.1458294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Introduction Brassica juncea is a major oilseed crop of Brassica. The seed weight is one of yield components in oilseed Brassica crops. Research on the genetic mechanism of seed weight is not only directly related to the yield and economic value of Brassica juncea but also can provide a theory foundation for studying other Brassica crops. Methods To map the genes for seed weight, the parental and F2 extreme bulks derived were constructed from the cross between the heavy-seeded accession 7981 and the light-seeded one Sichuan yellow (SY) of B. juncea, and used in bulk segregant sequencing (BSA-seq). Meanwhile, RNA-sequencing (RNA-seq) was performed for both parents at six seed development stages. Results Our results showed that a total of thirty five SNPs were identified in thirty two genes located on chromosomes A02 and A10, while fifty eight InDels in fifty one genes located on A01, A03, A05, A07, A09, A10, B01, B02 and B04. The 7,679 differentially expressed genes were identified in developing seeds between the parents. Furthermore, integrated analysis of BSA-seq and RNA-seq data revealed a cluster of nine genes on chromosome A10 and one gene on chromosome A05 that are putative candidate genes controlling seed weight in B. juncea. Discussion This study provides a new reference for research on Brassica seed weight and lays a solid foundation for the examination of seed in other Brassica crops.
Collapse
Affiliation(s)
- Bin Yang
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Liu Yang
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Lei Kang
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Liang You
- Hunan University of Humanities, Science and Technology, College of Agriculture and Biotechnology, Loudi, China
| | - Hao Chen
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Huagui Xiao
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Lunwen Qian
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Yong Rao
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhongsong Liu
- College of Agriculture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
4
|
Yang R, Roshani D, Gao B, Li P, Shang N. Metallothionein: A Comprehensive Review of Its Classification, Structure, Biological Functions, and Applications. Antioxidants (Basel) 2024; 13:825. [PMID: 39061894 PMCID: PMC11273490 DOI: 10.3390/antiox13070825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Metallothionein is a cysteine-rich protein with a high metal content that is widely found in nature. In addition to heavy metal detoxification, metallothionein is well known as a potent antioxidant. The high sulfhydryl content of metallothionein confers excellent antioxidant activity, enabling it to effectively scavenge free radicals and mitigate oxidative stress damage. In addition, metallothionein can play a neuroprotective role by alleviating oxidative damage in nerve cells, have an anticancer effect by enhancing the ability of normal cells to resist unfavorable conditions through its antioxidant function, and reduce inflammation by scavenging reactive oxygen species. Due to its diverse biological functions, metallothionein has a broad potential for application in alleviating environmental heavy metal pollution, predicting and diagnosing diseases, and developing skin care products and health foods. This review summarizes the recent advances in the classification, structure, biological functions, and applications of metallothionein, focusing on its powerful antioxidant effects and related functions.
Collapse
Affiliation(s)
- Ruoqiu Yang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Dumila Roshani
- College of Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China;
| | - Boya Gao
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Pinglan Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Nan Shang
- College of Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China;
| |
Collapse
|
5
|
Zhang X, Shen Y, Mu K, Cai W, Zhao Y, Shen H, Wang X, Ma H. Phenylalanine Ammonia Lyase GmPAL1.1 Promotes Seed Vigor under High-Temperature and -Humidity Stress and Enhances Seed Germination under Salt and Drought Stress in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233239. [PMID: 36501278 PMCID: PMC9736545 DOI: 10.3390/plants11233239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 05/13/2023]
Abstract
Seed vigor is an important agronomic attribute, essentially associated with crop yield. High-temperature and humidity (HTH) stress directly affects seed development of plants, resulting in the decrease of seed vigor. Therefore, it is particularly important to discover HTH-tolerant genes related to seed vigor. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the first rate-limiting enzyme in the phenylpropanoid biosynthesis pathway and a key enzyme involved in plant growth and development and environmental adaptation. However, the biological function of PAL in seed vigor remains unknown. Here, GmPAL1.1 was cloned from soybean, and its protein was located in the cytoplasm and cell membrane. GmPAL1.1 was significantly induced by HTH stress in developing seeds. The overexpression of GmPAL1.1 in Arabidopsis (OE) accumulated lower level of ROS in the developing seeds and in the leaves than the WT at the physiological maturity stage under HTH stress, and the activities of SOD, POD, and CAT and flavonoid contents were significantly increased, while MDA production was markedly reduced in the leaves of the OE lines than in those of the WT. The germination rate and viability of mature seeds of the OE lines harvested after HTH stress were higher than those of the WT. Compared to the control, the overexpression of GmPAL1.1 in Arabidopsis enhanced the tolerance to salt and drought stresses during germination. Our results suggested the overexpression of GmPAL1.1 in Arabidopsis promoted seed vigor at the physiological maturation period under HTH stress and increased the seeds' tolerance to salt and drought during germination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Ma
- Correspondence: ; Tel./Fax: +86-25-8439-5324
| |
Collapse
|
6
|
Miljaković D, Marinković J, Tamindžić G, Đorđević V, Tintor B, Milošević D, Ignjatov M, Nikolić Z. Bio-Priming of Soybean with Bradyrhizobium japonicum and Bacillus megaterium: Strategy to Improve Seed Germination and the Initial Seedling Growth. PLANTS (BASEL, SWITZERLAND) 2022; 11:1927. [PMID: 35893631 PMCID: PMC9332681 DOI: 10.3390/plants11151927] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Bio-priming is a new technique of seed treatment that improves seed germination, vigor, crop growth and yield. The objective of this study was to evaluate the effectiveness of Bradyrhizobium japonicum (commercial strains) and Bacillus megaterium (newly isolated strains) as a single inoculant and co-inoculant during seed bio-priming to improve seed germination and initial seedling growth of two soybean cultivars. The treated seeds were subjected to germination test (GT), cold test (CT) and accelerated aging test (AAT). B. megaterium significantly improved all parameters in GT and CT; final germination, shoot length, root length, root dry weight, and seedling vigor index in AAT, as compared to control. In addition, co-inoculation significantly increased all parameters except shoot dry weight in GT; all parameters in CT; germination energy, shoot length, root length, and seedling vigor index in AAT, in comparison to the control. Moreover, Br. japonicum significantly improved the germination energy, shoot length, shoot dry weight, root dry weight, and seedling vigor index in GT; all parameters in CT; shoot length, root length, and seedling vigor index in AAT, compared with non-primed seeds. Thus, B. megaterium strains could be used in soybean bio-priming as a potential single inoculant and co-inoculant, following proper field evaluation.
Collapse
Affiliation(s)
- Dragana Miljaković
- Department of Microbiological Preparations, Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (B.T.)
| | - Jelena Marinković
- Department of Microbiological Preparations, Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (B.T.)
| | - Gordana Tamindžić
- Laboratory for Seed Testing, Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (G.T.); (D.M.); (Z.N.)
| | - Vuk Đorđević
- Department of Legumes, Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia;
| | - Branislava Tintor
- Department of Microbiological Preparations, Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (B.T.)
| | - Dragana Milošević
- Laboratory for Seed Testing, Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (G.T.); (D.M.); (Z.N.)
| | - Maja Ignjatov
- Department of Vegetable and Alternative Crops, Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia;
| | - Zorica Nikolić
- Laboratory for Seed Testing, Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (G.T.); (D.M.); (Z.N.)
| |
Collapse
|