1
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Georgatos-Garcia S, Touriki G, Dragosloveanu CDM, Caruntu A, Savulescu-Fiedler I, Dragosloveanu S, Scheau AE, Badarau IA, Caruntu C, Scheau C. Pinosylvin: A Multifunctional Stilbenoid with Antimicrobial, Antioxidant, and Anti-Inflammatory Potential. Curr Issues Mol Biol 2025; 47:204. [PMID: 40136458 PMCID: PMC11941527 DOI: 10.3390/cimb47030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Stilbenoids are a category of plant compounds exhibiting notable health-related benefits. After resveratrol, perhaps the most well-known stilbenoid is pinosylvin, a major phytochemical constituent of most plants characterised by the pine spines among others. Pinosylvin and its derivatives have been found to exert potent antibacterial and antifungal effects, while their antiparasitic and antiviral properties are still a subject of ongoing research. The antioxidant properties of pinosylvin are mostly based on its scavenging of free radicals, inhibition of iNOS and protein kinase C, and promotion of HO-1 expression. Its anti-inflammatory properties are based on a variety of mechanisms, such as COX-2 inhibition, NF-κB and TRPA1 activation inhibition, and reduction in IL-6 levels. Its anticancer properties are partly associated with its antioxidant and anti-inflammatory potential, although a number of other mechanisms are described, such as apoptosis induction and matrix metalloproteinase inhibition. A couple of experiments have also suggested a neuroprotective potential. A multitude of ethnomedical and ethnobotanical effects of pinosylvin-containing plants are reported, like antimicrobial, antioxidant, anti-inflammatory, hepatoprotective, and prokinetic actions; many of these are corroborated by recent research. The advent of novel methods of artificial pinosylvin synthesis may facilitate its mass production and adoption as a medical compound. Finally, pinosylvin may be a tool in promoting environmentally friendly pesticide and insecticide policies and be used in land remediation schemes.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Georgia Touriki
- Faculty of Law, Democritus University of Thrace, 69100 Komotini, Greece
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
2
|
Yu L, Wang Y, Wang X, Han S, Wang L, Wang X. Transcriptomic, metabonomic and proteomic analyses reveal that terpenoids and flavonoids are required for Pinus koraiensis early defence against Bursaphelenchus xylophilus infection. BMC PLANT BIOLOGY 2025; 25:185. [PMID: 39934660 PMCID: PMC11816754 DOI: 10.1186/s12870-025-06192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Pine wilt disease (PWD), caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, threatens Pinus seriously. Pinus koraiensis is one of the most important pine species in China and is the host for PWN. However, our understanding of the defence-regulating process following infection by B. xylophilus at the molecular level remains limited. To understand the mechanisms that P. koraiensis responds to B. xylophilus invasion, P. koraiensis was inoculated with B. xylophilus solutions and observed no obvious symptoms during the early stage; symptoms began to appear at 5 dpi. Therefore, we conducted comparative transcriptomic, metabonomic and proteomic analyses between P. koraiensis 5dpi and 0 dpi. In infected plants, 1574 genes were significantly up-regulated, including 17 terpenoid-, 41 phenylpropanoid- and 22 flavonoid-related genes. According to GO and KEGG enrichment analyses of significantly up-regulated genes, 86 GO terms and 16 KEGG pathways were significantly enriched. Most terms and pathways were associated with terpenoid-, phenylpropanoid-, flavonoid- and carbohydrate-related events. Similarly, the abundance of 36 and 30 metabolites, significantly increased in positive and negative polarity modes, respectively. Among them, naringenin and 3-methyl-2-oxovaleric acid exhibited significant toxic effects on B. xylophilus. According to functional analysis of significantly up-regulated metabolites, most terms were enriched in above pathways, in addition to alkaloid biosynthesis. Although the abundance of few proteins changed, response to stress term was significantly enriched in significant up-regulated proteins. Furthermore, plant receptor-like serine/threonine kinases, pectin methylation modulators, pinosylvin O-methyltransferase and arabinogalactan/proline-rich proteins were significantly up-regulated in the infected P. koraiensis compared to healthy plants. These proteins were not abundant in the healthy plant. Overall, these results indicate that P. koraiensis can actively response to PWN via various defense strategies, including events related to terpenoids, flavonoids, phenylpropanoids, lipids and alkaloids. Particularly, terpenoids and flavonoids are required for the early defence of P. koraiensis against B. xylophilus infection.
Collapse
Affiliation(s)
- Lu Yu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanna Wang
- Chinese Society of Forestry, Beijing, 100091, China
| | - Xiang Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Sichuan, 611130, China
| | - Laifa Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xizhuo Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
3
|
De Rossi L, Rocchetti G, Lucini L, Rebecchi A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses-A Narrative Review. Antioxidants (Basel) 2025; 14:200. [PMID: 40002386 PMCID: PMC11851925 DOI: 10.3390/antiox14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Polyphenols (PPs) are recognized as bioactive compounds and antimicrobial agents, playing a critical role in enhancing food safety, preservation, and extending shelf life. The antimicrobial effectiveness of PPs has different molecular and biological reasons, predominantly linked to their hydroxyl groups and electron delocalization, which interact with microbial cell membranes, proteins, and organelles. These interactions may reduce the efficiency of metabolic pathways, cause destructive damage to the cell membrane, or they may harm the proteins and nucleic acids of the foodborne bacteria. Moreover, PPs exhibit a distinctive ability to form complexes with metal ions, further amplifying their antimicrobial activity. This narrative review explores the complex and multifaceted interactions between PPs and foodborne pathogens, underlying the correlation of their chemical structures and mechanisms of action. Such insights shed light on the potential of PPs as innovative natural preservatives within food systems, presenting an eco-friendly and sustainable alternative to synthetic additives.
Collapse
Affiliation(s)
- Luca De Rossi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy; (L.D.R.); (A.R.)
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Annalisa Rebecchi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy; (L.D.R.); (A.R.)
| |
Collapse
|
4
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2025; 22:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
5
|
Martínez-Márquez A, Selles-Marchart S, Nájera H, Morante-Carriel J, Martínez-Esteso MJ, Bru-Martínez R. Biosynthesis of Piceatannol from Resveratrol in Grapevine Can Be Mediated by Cresolase-Dependent Ortho-Hydroxylation Activity of Polyphenol Oxidase. PLANTS (BASEL, SWITZERLAND) 2024; 13:2602. [PMID: 39339576 PMCID: PMC11434850 DOI: 10.3390/plants13182602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Piceatannol is a naturally occurring hydroxylated analogue of the stilbene phytoalexin resveratrol that can be found in grape fruit and derived products. Piceatannol has aroused great interest as it has been shown to surpass some human health-beneficial properties of resveratrol including antioxidant activity, several pharmacological activities and also bioavailability. The plant biosynthetic pathway of piceatannol is still poorly understood, which is a bottleneck for the development of both plant defence and bioproduction strategies. Cell cultures of Vitis vinifera cv. Gamay, when elicited with dimethyl-β-cyclodextrin (MBCD) and methyl jasmonate (MeJA), lead to large increases in the accumulation of resveratrol, and after 120 h of elicitation, piceatannol is also detected due to the regiospecific hydroxylation of resveratrol. Therefore, an ortho-hydroxylase must participate in the biosynthesis of piceatannol. Herein, three possible types of resveratrol hydroxylation enzymatic reactions have been tested, specifically, a reaction catalyzed by an NADPH-dependent cytochrome, P450 hydroxylase, a 2-oxoglutarate-dependent dioxygenase and ortho-hydroxylation, similar to polyphenol oxidase (PPO) cresolase activity. Compared with P450 hydoxylase and the dioxygenase activities, PPO displayed the highest specific activity detected either in the crude extract, the particulate or the soluble fraction obtained from cell cultures elicited with MBCD and MeJA for 120 h. The overall yield of PPO activity present in the crude extract (107.42 EU) was distributed mostly in the soluble fraction (66.15 EU) rather than in the particulate fraction (3.71 EU). Thus, partial purification of the soluble fraction by precipitation with ammonium sulphate, dialysis and ion exchange chromatography was carried out. The soluble fraction precipitated with 80% ammonium sulphate and the chromatographic fractions also showed high levels of PPO activity, and the presence of the PPO protein was confirmed by Western blot and LC-MS/MS. In addition, a kinetic characterization of the cresolase activity of partially purified PPO was carried out for the resveratrol substrate, including Vmax and Km parameters. The Km value was 118.35 ± 49.84 µM, and the Vmax value was 2.18 ± 0.46 µmol min-1 mg-1.
Collapse
Affiliation(s)
- Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Susana Selles-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, San Vicente del Raspeig, 03690 Alicante, Spain
| | - Hugo Nájera
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana–Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Alcaldía Cuajimalpa de Morelos, Mexico City 05348, Mexico
| | - Jaime Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Plant Biotechnology Group, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Av. Quito km. 1 1/2 vía a Santo Domingo de los Tsachilas, Quevedo 120501, Ecuador
| | - Maria J. Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, 03690 Alicante, Spain
| |
Collapse
|
6
|
Sun X, Huang Q, Wu M, He L, Zhao X, Yang X. Metabolomics and quantitative analysis to determine differences in the geographical origins and species of Chinese dragon's blood. FRONTIERS IN PLANT SCIENCE 2024; 15:1427731. [PMID: 39359632 PMCID: PMC11445005 DOI: 10.3389/fpls.2024.1427731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Objective The aim of this study was to comprehensively analyze the differences in Chinese dragon's blood (CDB), specifically Dracaena cochinchinensis and Dracaena cambodiana, from different geographical origins. Methods Metabolomic analysis of CDB was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A reliable ultrahigh-performance liquid chromatography method with a photodiode array detector (UHPLC-PDA) was developed and applied for the quantitative analysis of 12 phenolic compounds in 51 batches of samples. Results A total of 1394 metabolites were detected, of which 467 were identified as differentially accumulated metabolites. Multivariate analysis revealed that both origin and species had an effect on the composition of CDB, with greater variation between species. 19 phenolic compounds were selected as quality markers to distinguish D. cochinchinensis (Hdsp) from D. cambodiana (Hdca), and oppositin and spinoflavanone a were identified as quality markers to discriminate D. cochinchinensis samples from Hainan (Hdsp) and Guangxi Provinces (Gdc). Quantitative analysis indicated that four phenolic compounds, including loureirin D, 4H-1-benzopyran-4-one,2,3-dihydro-3,5,7-trihydroxy-3-[(4-methoxyphenyl)methyl]-,(R)-, loureirin B, and pterostilbene, showed significant differences between Gdc and Hdsp. Additionally, five phenolic compounds, namely resveratrol, loureirin D, pinostilbene, 4H-1-benzopyran-4-one,2,3-dihydro-3,5,7-trihydroxy-3-[(4-methoxyphenyl)methyl]-, (R)-, and loureirin B, exhibited significant differences between Hdsp and Hdca. Conclusion There are significant differences in the quality of CDB from different geographical origins and species, which lays the foundation for the in-depth development and utilization of different sources of CDB.
Collapse
Affiliation(s)
- Xiuting Sun
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Huang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Mingsong Wu
- College of Life Science, Sichuan University, Chengdu, China
| | - Liu He
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Xinquan Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| |
Collapse
|
7
|
Sun T, Wang Y, Niu D, Geng Q, Qiu H, Song F, Keller NP, Tian J, Yang K. Peanut Rhizosphere Achromobacter xylosoxidans Inhibits Aspergillus flavus Development and Aflatoxin Synthesis by Inducing Apoptosis through Targeting the Cell Membrane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17572-17587. [PMID: 39069673 DOI: 10.1021/acs.jafc.4c05291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Contamination of crop seeds and feed with Aspergillus flavus and its associated aflatoxins presents a significant threat to human and animal health due to their hepatotoxic and carcinogenic properties. To address this challenge, researchers have screened for potential biological control agents in peanut soil and pods. This study identified a promising candidate, a strain of the nonpigmented bacterium, Achromobacter xylosoxidans ZJS2-1, isolated from the peanut rhizosphere in Zhejiang Province, China, exhibiting notable antifungal and antiaflatoxin activities. Further investigations demonstrated that ZJS2-1 active substances (ZAS) effectively inhibited growth at a MIC of 60 μL/mL and nearly suppressed AFB1 production by 99%. Metabolomic analysis revealed that ZAS significantly affected metabolites involved in cell wall and membrane biosynthesis, leading to compromised cellular integrity and induced apoptosis in A. flavus through the release of cytochrome c. Notably, ZAS targeted SrbA, a key transcription factor involved in ergosterol biosynthesis and cell membrane integrity, highlighting its crucial role in ZJS2-1's biocontrol mechanism. Moreover, infection of crop seeds and plant wilt caused by A. flavus can be efficiently alleviated by ZAS. Additionally, ZJS2-1 and ZAS demonstrated significant inhibitory effects on various Aspergillus species, with inhibition rates ranging from 80 to 99%. These findings highlight the potential of ZJS2-1 as a biocontrol agent against Aspergillus species, offering a promising solution to enhance food safety and protect human health.
Collapse
Affiliation(s)
- Tongzheng Sun
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yuxin Wang
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Dongjing Niu
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qingru Geng
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Han Qiu
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Fengqin Song
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jun Tian
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Kunlong Yang
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
8
|
Fialková V, Ďúranová H, Borotová P, Klongová L, Grabacka M, Speváková I. Natural Stilbenes: Their Role in Colorectal Cancer Prevention, DNA Methylation, and Therapy. Nutr Cancer 2024; 76:760-788. [PMID: 38950568 DOI: 10.1080/01635581.2024.2364391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
The resistance of colorectal cancer (CRC) to conventional therapeutic modalities, such as radiation therapy and chemotherapy, along with the associated side effects, significantly limits effective anticancer strategies. Numerous epigenetic investigations have unveiled that naturally occurring stilbenes can modify or reverse abnormal epigenetic alterations, particularly aberrant DNA methylation status, offering potential avenues for preventing or treating CRC. By modulating the activity of the DNA methylation machinery components, phytochemicals may influence the various stages of CRC carcinogenesis through multiple molecular mechanisms. Several epigenetic studies, especially preclinical research, have highlighted the effective DNA methylation modulatory effects of stilbenes with minimal adverse effects on organisms, particularly in combination therapies for CRC. However, the available preclinical and clinical data regarding the effects of commonly encountered stilbenes against CRC are currently limited. Therefore, additional epigenetic research is warranted to explore the preventive potential of these phytochemicals in CRC development and to validate their therapeutic application in the prevention and treatment of CRC. This review aims to provide an overview of selected bioactive stilbenes as potential chemopreventive agents for CRC with a focus on their modulatory mechanisms of action, especially in targeting alterations in DNA methylation machinery in CRC.
Collapse
Affiliation(s)
- Veronika Fialková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Lucia Klongová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Ivana Speváková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
9
|
Hu C, Zhai Y, Lin H, Lu H, Zheng J, Wen C, Li X, Ge RS, Liu Y, Zhu Q. Resveratrol analogues and metabolites selectively inhibit human and rat 11β-hydroxysteroid dehydrogenase 1 as the therapeutic drugs: structure-activity relationship and molecular dynamics analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:641-663. [PMID: 39139138 DOI: 10.1080/1062936x.2024.2389817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
Resveratrol is converted to various metabolites by gut microbiota. Human and rat liver 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) are critical for glucocorticoid activation, while 11β-HSD2 in the kidney does the opposite reaction. It is still uncertain whether resveratrol and its analogues selectively inhibit 11β-HSD1. In this study, the inhibitory strength, mode of action, structure-activity relationship (SAR), and docking analysis of resveratrol analogues on human, rat, and mouse 11β-HSD1 and 11β-HSD2 were performed. The inhibitory strength of these chemicals on human 11β-HSD1 was dihydropinosylvin (6.91 μM) > lunularin (45.44 μM) > pinostilbene (46.82 μM) > resveratrol (171.1 μM) > pinosylvin (193.8 μM) > others. The inhibitory strength of inhibiting rat 11β-HSD1 was pinostilbene (9.67 μM) > lunularin (17.39 μM) > dihydropinosylvin (19.83 μM) > dihydroresveratrol (23.07 μM) > dihydroxystilbene (27.84 μM) > others and dihydropinosylvin (85.09 μM) and pinostilbene (>100 μM) inhibited mouse 11β-HSD1. All chemicals did not inhibit human, rat, and mouse 11β-HSD2. It was found that dihydropinosylvin, lunularin, and pinostilbene were competitive inhibitors of human 11β-HSD1 and that pinostilbene, lunularin, dihydropinosylvin, dihydropinosylvin and dihydroxystilbene were mixed inhibitors of rat 11β-HSD1. Docking analysis showed that they bind to the steroid-binding site of human and rat 11β-HSD1. In conclusion, resveratrol and its analogues can selectively inhibit human and rat 11β-HSD1, and mouse 11β-HSD1 is insensitive to the inhibition of resveratrol analogues.
Collapse
Affiliation(s)
- C Hu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Y Zhai
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - H Lin
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - H Lu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - J Zheng
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Wen
- Department of Neonatal Paediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - X Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - R S Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Y Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Q Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Chammam A, Fillaudeau L, Romdhane M, Bouajila J. Chemical Composition and In Vitro Bioactivities of Extracts from Cones of P. halepensis, P. brutia, and P. pinea: Insights into Pharmaceutical and Cosmetic Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:1802. [PMID: 38999642 PMCID: PMC11244457 DOI: 10.3390/plants13131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Various parts of the Pinaceae species, a traditional plant, have potential health benefits and exhibit antibacterial, anti-cancer, and antioxidant activities. This study aims to investigate the biochemical properties of both petal (P) and core (C) fractions from pinecones of P. halepensis (PA), P. brutia (PB), and P. pinea (PP). Pinecones were manually separated into P and C, which were then milled to investigate maceration with solvents of increasing polarity: cyclohexane (1SV), ethyl acetate (2SV), and methanol (3SV) at 20 °C. Spectrophotometry was utilized to quantify the total phenolic content (TPC) and to assess bioactivities. Gas chromatography with mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) were employed to identify the chemical composition. 3SV extracts demonstrated the highest TPC and a significant anti-oxidant potential. PA-P-3SV exhibited the highest TPC (460.66 mg GAE/g DW) and PP-P-3SV displayed the best IC50 (10.54 µg/mL) against DPPH. 1SV and 2SV extracts showed interesting anticancer activity against Hela and HepG2 cells. No significant toxic effect of P and C extracts from pinecones was observed on HEK-293 cells. GC-MS analysis unveiled 46 volatile compounds, of which 32 were detected for the first time in these species. HPLC analysis identified 38 compounds, of which 27 were not previously detected in these species. This study highlights the significant potential of pinecones as a rich source of bioactive compounds.
Collapse
Affiliation(s)
- Amel Chammam
- Toulouse Biotechnology Institute, Bio & Chemical Engineering TBI (CNRS UMR5504, INRAE UMR792, INSA Toulouse), 31400 Toulouse, France; (A.C.); (L.F.)
- Energy, Water, Environment and Process Laboratory (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6029, Tunisia;
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, 31062 Toulouse, France
| | - Luc Fillaudeau
- Toulouse Biotechnology Institute, Bio & Chemical Engineering TBI (CNRS UMR5504, INRAE UMR792, INSA Toulouse), 31400 Toulouse, France; (A.C.); (L.F.)
| | - Mehrez Romdhane
- Energy, Water, Environment and Process Laboratory (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6029, Tunisia;
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, 31062 Toulouse, France
| |
Collapse
|
11
|
Goleij P, Sanaye PM, Babamohamadi M, Tabari MAK, Amirian R, Rezaee A, Mirzaei H, Kumar AP, Sethi G, Sadreddini S, Jeandet P, Khan H. Phytostilbenes in lymphoma: Focuses on the mechanistic and clinical prospects of resveratrol, pterostilbene, piceatannol, and pinosylvin. Leuk Res 2024; 138:107464. [PMID: 38422882 DOI: 10.1016/j.leukres.2024.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Lymphoma is a cancer affecting the lymphatic system that fights infections and diseases. In addition to surgery, radiotherapy, and chemotherapy, novel approaches have recently been investigated, such as phytostilbenes in treating lymphoma. Phytostilbenes are natural compounds present in various plants and have been shown to have different therapeutic effects, including anticancer properties. Resveratrol is a main phytostilbene with various derivates followed by pterostilbene and piceatannol. Studies have revealed that phytostilbenes can suppress the growth and proliferation of lymphoma cells by inducing apoptosis and inhibiting specific enzyme activity in cancer cell survival. The compounds also have antiinflammatory effects contributing to reducing lymphoma-associated inflammation. Additionally, phytostilbenes have been shown to increase the immune system's ability to fight cancer cells by activating immune cells (T-cells and natural killer cells). This review investigates the potential therapeutic effects of phytostilbenes, including resveratrol, pterostilbene, piceatannol, and pinosylvin, against lymphoma.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehregan Babamohamadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran; Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roshanak Amirian
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sarvin Sadreddini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit "Induced Resistance and Plant Bioprotection", RIBP-USC INRA 1488, Reims 51100, France
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
12
|
Howaili F, Saadabadi A, Mäkilä E, Korotkova E, Eklund PC, Salo-Ahen OMH, Rosenholm JM. Investigating the Effectiveness of Different Porous Nanoparticles as Drug Carriers for Retaining the Photostability of Pinosylvin Derivative. Pharmaceutics 2024; 16:276. [PMID: 38399330 PMCID: PMC10892027 DOI: 10.3390/pharmaceutics16020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Pinosylvin monomethyl ether (PsMME) is a natural compound known for its valuable bioactive properties, including antioxidant and anti-inflammatory effects. However, PsMME's susceptibility to photodegradation upon exposure to ultraviolet (UV) radiation poses a significant limitation to its applications in the pharmaceutical field. This study, for the first time, introduces a strategy to enhance the photostability of PsMME by employing various nanoformulations. We utilized mesoporous silica nanoparticles (MSNs) coated with polydopamine via a poly(ethylene imine) layer (PDA-PEI-MSNs), thermally carbonized porous silicon nanoparticles (TCPSi), and pure mesoporous polydopamine nanoparticles (MPDA). All these nanocarriers exhibit unique characteristics, including the potential for shielding the drug from UV light, which makes them promising for enhancing the photostability of loaded drugs. Here, these three nanoparticles were synthesized and their morphological and physicochemical properties, including size and ζ-potential, were characterized. They were subsequently loaded with PsMME, and the release profiles and kinetics of all three nanoformulations were determined. To assess their photoprotection ability, we employed gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS) to assess the recovery percentage of loaded PsMME before and after UV exposure for each nanoformulation. Our findings reveal that MPDA exhibits the highest protection ability, with a remarkable 90% protection against UV light on average. This positions MPDA as an ideal carrier for PsMME, and by extension, potentially for other photolabile drugs as well. As a final confirmation of its suitability as a drug nanocarrier, we conducted cytotoxicity evaluations of PsMME-loaded MPDA, demonstrating dose-dependent drug toxicity for this formulation.
Collapse
Affiliation(s)
- Fadak Howaili
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
| | - Atefeh Saadabadi
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland;
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland;
| | - Ekaterina Korotkova
- Laboratory of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland;
| | - Patrik C. Eklund
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland;
| | - Outi M. H. Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
| |
Collapse
|
13
|
Mendonça ELSS, Xavier JA, Fragoso MBT, Silva MO, Escodro PB, Oliveira ACM, Tucci P, Saso L, Goulart MOF. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals (Basel) 2024; 17:232. [PMID: 38399446 PMCID: PMC10891666 DOI: 10.3390/ph17020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Stilbenes are phytoalexins, and their biosynthesis can occur through a natural route (shikimate precursor) or an alternative route (in microorganism cultures). The latter is a metabolic engineering strategy to enhance production due to stilbenes recognized pharmacological and medicinal potential. It is believed that in the human body, these potential activities can be modulated by the regulation of the nuclear factor erythroid derived 2 (Nrf2), which increases the expression of antioxidant enzymes. Given this, our review aims to critically analyze evidence regarding E-stilbenes in human metabolism and the Nrf2 activation pathway, with an emphasis on inflammatory and oxidative stress aspects related to the pathophysiology of chronic and metabolic diseases. In this comprehensive literature review, it can be observed that despite the broad number of stilbenes, those most frequently explored in clinical trials and preclinical studies (in vitro and in vivo) were resveratrol, piceatannol, pterostilbene, polydatin, stilbestrol, and pinosylvin. In some cases, depending on the dose/concentration and chemical nature of the stilbene, it was possible to identify activation of the Nrf2 pathway. Furthermore, the use of some experimental models presented a challenge in comparing results. In view of the above, it can be suggested that E-stilbenes have a relationship with the Nrf2 pathway, whether directly or indirectly, through different biological pathways, and in different diseases or conditions that are mainly related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Elaine L. S. S. Mendonça
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | - Jadriane A. Xavier
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Marilene B. T. Fragoso
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Messias O. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | | | | | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| |
Collapse
|
14
|
Kim YR, Han JY, Choi YE. A Pinus strobus transcription factor PsbHLH1 activates the production of pinosylvin stilbenoids in transgenic Pinus koraiensis calli and tobacco leaves. FRONTIERS IN PLANT SCIENCE 2024; 15:1342626. [PMID: 38304739 PMCID: PMC10830828 DOI: 10.3389/fpls.2024.1342626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
Transcription factors (TFs) play an important role in regulating the biosynthesis of secondary metabolites. In Pinus strobus, the level of methylated derivatives of pinosylvin is significantly increased upon pine wood nematode (PWN) infection, and these compounds are highly toxic to PWNs. In a previous study, we found that the expression of a basic helix-loop-helix TF gene, PsbHLH1, strongly increased in P. strobus plants after infection with PWNs. In this study, we elucidated the regulatory role of the PsbHLH1 gene in the production of methylated derivatives of pinosylvin such as pinosylvin monomethyl ether (PME) and dihydropinoylvin monomethyl ether (DPME). When PsbHLH1 was overexpressed in Pinus koraiensis calli, the production of PME and DPME was significantly increased. Overexpression of the stilbene synthase (PsSTS) and pinosylvin methyl transferase (PsPMT) genes, known as key enzymes for the biosynthesis of methylated pinosylvins, did not change PME or DPME production. Moreover, PME and DPME were not produced in tobacco leaves when the PsSTS and PsPMT genes were transiently coexpressed. However, the transient expression of three genes, PsSTS, PsPMT, and PsbHLH1, resulted in the production of PME and DPME in tobacco leaves. These results prove that PsbHLH1 is an important TF for the pinosylvin stilbene biosynthesis in pine plants and plays a regulatory role in the engineered production of PME and DPME in tobacco plants.
Collapse
Affiliation(s)
| | | | - Yong Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
15
|
Sharma A, Anurag, Kaur J, Kesharwani A, Parihar VK. Antimicrobial Potential of Polyphenols: An Update on Alternative for Combating Antimicrobial Resistance. Med Chem 2024; 20:576-596. [PMID: 38584534 DOI: 10.2174/0115734064277579240328142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
The last decade has encountered an increasing demand for plant-based natural antibiotics. This demand has led to more research-based investigations for natural sources of antimicrobial agents and published reports demonstrating that plant extracts are widely applied in modern medicine, reporting potential activity that may be due to polyphenol compounds. Interestingly, the effects of polyphenols on the sensitivity of bacteria to antibiotics have not been well-studied. Hence, the current review encompasses the prospective application of plant-based phenolic extracts from plants of Indian origin. The emergence of resistance to antimicrobial agents has increased the inefficacy of many antimicrobial drugs. Several strategies have been developed in recent times to overcome this issue. A combination of antimicrobial agents is employed for the failing antibiotics, which restores the desirable effect but may have toxicity-related issues. Phytochemicals such as some polyphenols have demonstrated their potent activity as antimicrobial agents of natural origin to work against resistance issues. These agents alone or in combination with certain antibiotics have been shown to enhance the antimicrobial activity against a spectrum of microbes. However, the information regarding the mechanisms and structure-activity relationships remains elusive. The present review also focuses on the possible mechanisms of natural compounds based on their structure- activity relationships for incorporating polyphenolic compounds in the drug-development processes. Besides this work, polyphenols could reduce drug dosage and may diminish the unhidden or hidden side effects of antibiotics. Pre-clinical findings have provided strong evidence that polyphenolic compounds, individually and in combination with already approved antibiotics, work well against the development of resistance. However, more studies must focus on in vivo results, and clinical research needs to specify the importance of polyphenol-based antibacterials in clinical trials.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Anurag
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Jasleen Kaur
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, 226002, UP, India
| | - Anuradha Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| |
Collapse
|
16
|
Su M, Ye L, Tang Y, Wang S, Hu Z, Li H, Wang Y, Li X, Liu Y, Ge RS. Inhibition of Resveratrol Analogs on Human and Rat 3β-Hydroxysteroid Dehydrogenases: Structure-Activity Relationship and Docking Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7566-7574. [PMID: 37129992 DOI: 10.1021/acs.jafc.3c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Resveratrol and its analogs are phytochemicals. Human 3β-hydroxysteroid dehydrogenase 1 (3β-HSD1) synthesizes steroid hormones for normal pregnancy or promoting cancer metastasis. Whether they inhibit 3β-HSD1 remains unclear. In this study, the inhibitory potency, mode of action, structure-activity relationship, and docking parameters of resveratrol and its analogs on 3β-HSD1 and rat homolog 3β-HSD4 were analyzed. The inhibitory potency of these chemicals on human 3β-HSD1 was 4,4'-dihydroxystilbene (IC50, 3.68 μM) > pinostilbene (8.07 μM) > pinosylvin (10.60 μM) > lunularin (26.84 μM) > resveratrol (30.20 μM) > dihydroresveratrol (>100 μM) = oxyresveratrol (>100 μM) > dihydropinosylvin (ineffective at 100 μM). Resveratrol analogs and metabolites are mixed or competitive inhibitors of human 3β-HSD1. Resveratrol and 4,4'-dihydroxystilbene inhibited progesterone secretion by human JAr cells at ≥1 μM. Resveratrol (IC50, 32.09 μM) and pinosylvin (34.71 μM) significantly inhibited rat placental 3β-HSD4 activity. Docking analysis shows that resveratrol analogs and metabolites bind the steroid-binding sites of human 3β-HSD1 and rat 3β-HSD4 and interact with the catalytic residues Ser125/Thr125 and Tyr155. The negative correlation of LogP and IC50 values for human 3β-HSD1 indicates that lipophilicity of chemicals plays a critical role in the inhibitory effect of chemicals. In conclusion, 4,4'-dihydroxystilbene, pinostilbene, and pinosylvin effectively inhibit human 3β-HSD1 depending on their lipophilicity, thereby acting as potential therapeutic agents.
Collapse
Affiliation(s)
- Ming Su
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang Province, China
| | - Lei Ye
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhiyan Hu
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoheng Li
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
17
|
Al-Khayri JM, Mascarenhas R, Harish HM, Gowda Y, Lakshmaiah VV, Nagella P, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk AAS. Stilbenes, a Versatile Class of Natural Metabolites for Inflammation-An Overview. Molecules 2023; 28:molecules28093786. [PMID: 37175197 PMCID: PMC10180133 DOI: 10.3390/molecules28093786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Stilbenes are polyphenolic allelochemicals synthesized by plants, especially grapes, peanuts, rhubarb, berries, etc., to defend themselves under stressful conditions. They are now exploited in medicine for their antioxidant, anti-proliferative and anti-inflammatory properties. Inflammation is the immune system's response to invading bacteria, toxic chemicals or even nutrient-deprived conditions. It is characterized by the release of cytokines which can wreak havoc on healthy tissues, worsening the disease condition. Stilbenes modulate NF-κB, MAPK and JAK/STAT pathways, and reduce the transcription of inflammatory factors which result in maintenance of homeostatic conditions. Resveratrol, the most studied stilbene, lowers the Michaelis constant of SIRT1, and occupies the substrate binding pocket. Gigantol interferes with the complement system. Besides these, oxyresveratrol, pterostilbene, polydatin, viniferins, etc., are front runners as drug candidates due to their diverse effects from different functional groups that affect bioavailability and molecular interactions. However, they each have different thresholds for toxicity to various cells of the human body, and thus a careful review of their properties must be conducted. In animal models of autoinflammatory diseases, the mode of application of stilbenes is important to their absorption and curative effects, as seen with topical and microemulsion gel methods. This review covers the diversity seen among stilbenes in the plant kingdom and their mechanism of action on the different inflammatory pathways. In detail, macrophages' contribution to inflamed conditions in the liver, the cardiac, connective and neural tissues, in the nephrons, intestine, lungs and in myriad other body cells is explored, along with detailed explanation on how stilbenes alleviate the symptoms specific to body site. A section on the bioavailability of stilbenes is included for understanding the limitations of the natural compounds as directly used drugs due to their rapid metabolism. Current delivery mechanisms include sulphonamides, or using specially designed synthetic drugs. It is hoped that further research may be fueled by this comprehensive work that makes a compelling argument for the exploitation of these compounds in medicine.
Collapse
Affiliation(s)
- Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Roseanne Mascarenhas
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore 560029, India
| | | | - Yashwanth Gowda
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore 560029, India
| | | | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore 560029, India
| | - Muneera Qassim Al-Mssallem
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatima Mohammed Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Virus and Phytoplasma, Plant Pathology Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
18
|
Cao Z, Ma Q, Weng Y, Shi J, Chen J, Hao Z. Genome-Wide Identification and Expression Analysis of TPS Gene Family in Liriodendron chinense. Genes (Basel) 2023; 14:genes14030770. [PMID: 36981040 PMCID: PMC10048281 DOI: 10.3390/genes14030770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Terpenoids play a key role in plant growth and development, supporting resistance regulation and terpene synthase (TPS), which is the last link in the synthesis process of terpenoids. Liriodendron chinense, commonly called the Chinese tulip tree, is a rare and endangered tree species of the family Magnoliaceae. However, the genome-wide identification of the TPS gene family and its transcriptional responses to development and abiotic stress are still unclear. In the present study, we identified a total of 58 TPS genes throughout the L. chinense genome. A phylogenetic tree analysis showed that they were clustered into five subfamilies and unevenly distributed across six chromosomes. A cis-acting element analysis indicated that LcTPSs were assumed to be highly responsive to stress hormones, such as methyl jasmonate (MeJA) and abscisic acid (ABA). Consistent with this, transcriptome data showed that most LcTPS genes responded to abiotic stress, such as cold, drought, and hot stress, at the transcriptional level. Further analysis showed that LcTPS genes were expressed in a tissue-dependent manner, especially in buds, leaves, and bark. Quantitative reverse transcription PCR (qRT-PCR) analysis confirmed that LcTPS expression was significantly higher in mature leaves compared to young leaves. These results provide a reference for understanding the function and role of the TPS family, laying a foundation for further study of the regulation of TPS in terpenoid biosynthesis in L. chinense.
Collapse
Affiliation(s)
- Zijian Cao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qianxi Ma
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuhao Weng
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
19
|
Bouyahya A, Taha D, Benali T, Zengin G, El Omari N, El Hachlafi N, Khalid A, Abdalla AN, Ardianto C, Tan CS, Ming LC, Sahib N. Natural sources, biological effects, and pharmacological properties of cynaroside. Biomed Pharmacother 2023; 161:114337. [PMID: 36812715 DOI: 10.1016/j.biopha.2023.114337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Cynaroside is a flavonoid, isolated from several species belonging to the Apiaceae, Poaceae, Lamiaceae, Solanaceae, Zingiberaceae, Compositae and other families and it can be extracted from seeds, roots, stems, leaves, barks, flowers, fruits, aerial parts, and the whole plant of these species. This paper discloses the current state of knowledge on the biological/pharmacological effects and mode of action to better understand the numerous health benefits of cynaroside. Several research works revealed that cynaroside could have beneficial effects on various human pathologies. Indeed, this flavonoid exerts antibacterial, antifungal, antileishmanial, antioxidant, hepatoprotective, antidiabetic, anti-inflammatory, and anticancer effects. Additionally, cynaroside exhibits its anticancer effects by blocking MET/AKT/mTOR axis by decreasing the phosphorylation level of AKT, mTOR, and P70S6K. For antibacterial activity, cynaroside reduces biofilm development of Pseudomonas aeruginosa and Staphylococcus aureus. Moreover, the incidence of mutations leading to ciprofloxacin resistance in Salmonella typhimurium was reduced after the treatment with cynaroside. In addition, cynaroside inhibited the production of reactive oxygen species (ROS), which reduced the damage to mitochondrial membrane potential caused by hydrogen peroxide (H2O2). It also enhanced the expression of the anti-apoptotic protein Bcl-2 and lowered that of the pro-apoptotic protein Bax. Cynaroside abrogated the up-regulation of c-Jun N-terminal kinase (JNK) and p53 protein expression triggered by H2O2. All these findings suggest that cynaroside could be used to prevent certain human diseases.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Douae Taha
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials Water and Environment-CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh-Safi 46030, Morocco.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42250, Turkey.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V. University in Rabat, B.P. 6203, Rabat 10000, Morocco.
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Fez B.P. 2626, Morocco.
| | - Asaad Khalid
- 7 Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, 71800 Nilai, Malaysia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Narjis Sahib
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Mohammed Premier University, Oujda 60000, Morocco.
| |
Collapse
|
20
|
Dincheva I, Badjakov I, Galunska B. New Insights into the Research of Bioactive Compounds from Plant Origins with Nutraceutical and Pharmaceutical Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:258. [PMID: 36678971 PMCID: PMC9860645 DOI: 10.3390/plants12020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Plant bioactive compounds are essential for human health due to their multiple biological effects, such as antioxidant, anticarcinogenic, antiallergenic, anti-inflammatory, antimutagenic, and antimicrobial activities, which can have beneficial effects on various noncommunicable diseases, such as autoimmune, inflammatory, cardiovascular, cancer, metabolic, and neurodegenerative diseases [...].
Collapse
Affiliation(s)
- Ivayla Dincheva
- Department of Agrobiotechnologies, Agrobioinstitute, Agricultural Academy, 8 Dragan Tsankov blvd., 1164 Sofia, Bulgaria
| | - Ilian Badjakov
- Department of Agrobiotechnologies, Agrobioinstitute, Agricultural Academy, 8 Dragan Tsankov blvd., 1164 Sofia, Bulgaria
| | - Bistra Galunska
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculties of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 84 Tzar Osvoboditel Str., 9000 Varna, Bulgaria
| |
Collapse
|
21
|
Hu Y, Zhang C, Zou L, Zheng Z, Ouyang J. Efficient biosynthesis of pinosylvin from lignin-derived cinnamic acid by metabolic engineering of Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:136. [PMID: 36503554 PMCID: PMC9743564 DOI: 10.1186/s13068-022-02236-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The conversion of lignin-derived aromatic monomers into valuable chemicals has promising potential to improve the economic competitiveness of biomass biorefineries. Pinosylvin is an attractive pharmaceutical with multiple promising biological activities. RESULTS Herein, Escherichia coli was engineered to convert the lignin-derived standard model monomer cinnamic acid into pinosylvin by introducing two novel enzymes from the wood plant: stilbene synthase from Pinus pinea (PpSTS) and 4-Coumarate-CoA ligase from Populus trichocarpa (Ptr4CL4). The expression of Ptr4CL4 drastically improved the production of pinosylvin (42.5 ± 1.1 mg/L), achieving values 15.7-fold higher than that of Ptr4CL5 (another 4-Coumarate-CoA ligase from Populus trichocarpa) in the absence of cerulenin. By adjusting the expression strategy, the optimized engineered strain produced pinosylvin at 153.7 ± 2.2 mg/L with an extremely high yield of 1.20 ± 0.02 mg/mg cinnamic acid in the presence of cerulenin, which is 83.9% ± 1.17 of the theoretical yield. This is the highest reported pinosylvin yield directly from cinnamic acid to date. CONCLUSION Our work highlights the feasibility of microbial production of pinosylvin from cinnamic acid and paves the way for converting lignin-related aromatics to valuable chemicals.
Collapse
Affiliation(s)
- Yueli Hu
- grid.410625.40000 0001 2293 4910Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China ,grid.410625.40000 0001 2293 4910College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Chen Zhang
- grid.410625.40000 0001 2293 4910College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Lihua Zou
- grid.410625.40000 0001 2293 4910Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China ,grid.410625.40000 0001 2293 4910College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Zhaojuan Zheng
- grid.410625.40000 0001 2293 4910Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China ,grid.410625.40000 0001 2293 4910College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Jia Ouyang
- grid.410625.40000 0001 2293 4910Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China ,grid.410625.40000 0001 2293 4910College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| |
Collapse
|
22
|
Kim YR, Han JY, Choi YE. Production of Nematicidal Pinosylvin Stilbenes in Cell Suspension Cultures of Pinus koraiensis by Fungal Elicitation. PLANTS (BASEL, SWITZERLAND) 2022; 11:2933. [PMID: 36365388 PMCID: PMC9658687 DOI: 10.3390/plants11212933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Pinosylvin stilbenes are natural phenolic compounds found in the Pinaceae family and act as phytoalexins. Some pinosylvin stilbenes have strong nematicidal activity against pine wood nematodes (PWNs: Bursaphelenchus xylophilus). Here, we established the efficient production of two pinosylvin stilbenes, dihydropinosylvin monomethylether (DPME) and pinosylvin monomethylether (PME), by cell suspension culture of Pinus koraiensis after fungal elicitation. DPME and PME were found in small amounts (less than 40 µg/g DW) in the stem bark and leaves of P. koraiensis plants. Cell suspension cultures were established from the cultures of calli derived from mature zygotic embryos of P. koraiensis in 1/2 Litvay medium containing 2.2 μM 2,4-D and 2.2 μM BA. Two types of fungal elicitors, fungal cell extract (CE) and fungal medium filtrate (MF), were prepared from three species of fungi (Penicillium chrysogenum, P. pinophilum, and P. roquefortii). CE and MF treatments strongly stimulated the production of PME and DPME in cultured cells. The production of PME in suspension cells of P. chrysogenum, P. pinophilum, and P. roquefortii MF treatments after 3 days was 5734 µg/g DW, 4051 µg/g DW, and 6724 µg/g DW, respectively. Pinosylvin synthase (PkSTS) and pinosylvin O-methyltransferase (PkPMT) are key genes in DPME and PME biosynthesis. qPCR analysis revealed that the expression of the PkSTS and PkPMT in cultured cells was highly enhanced after fungal elicitor treatment. The cell extracts after MF treatment resulted in 92.5 ± 7.8% immobilization of the adult PWNs and 63.7 ± 3.5% immobilization of the juvenile PWNs within 24 h. However, control cell extracts without MF treatment showed 11.3 ± 1.4% nematicidal activity against adult PWNs. Our results suggest that pinosylvin stilbenes can be produced from the cell culture of P. koraiensis after fungal elicitor treatment and can be used as nematicidal compounds against PWNs.
Collapse
|
23
|
Benali T, Jaouadi I, Ghchime R, El Omari N, Harboul K, Hammani K, Rebezov M, Shariati MA, Mubarak MS, Simal-Gandara J, Zengin G, Park MN, Kim B, Mahmud S, Lee LH, Bouyahya A. The Current State of Knowledge in Biological Properties of Cirsimaritin. Antioxidants (Basel) 2022; 11:1842. [PMID: 36139916 PMCID: PMC9495358 DOI: 10.3390/antiox11091842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The search for natural plant-based products as new pharmacological alternatives to treat various human pathologies has taken on great importance for researchers and research laboratories. In this context, research has intensified to extract and identify natural molecules endowed with biological effects. The objective of this study is to review the source and pharmacological properties of cirsimaritin. The identification and isolation of this flavonoid from various natural sources, including medicinal plants such as Artemisia judaica, Cirsium japonicum, Lithocarpus dealbatus, Microtea debilis, and Ocimum sanctum, has been carried out and verified using different spectral techniques. Biological effect investigations are carried out with a wide variety of experimental models in vitro and in vivo and laboratory techniques. The results of these research works showed the biological properties of cirsimaritin including anticancer, antimicrobial, antidiabetic, antiparasitic, antioxidant, and anti-inflammatory effects. The mechanisms involved in the multiple activities of this molecule are diverse and include sub-cellular, cellular, and molecular levels. Indeed, this bioactive induces anti-inflammatory and antiproliferative effects by inhibiting cell membrane receptors, interference with signaling pathways, and inhibiting transcriptional factors such as Nf-κB involved in cell promotion and proliferation. In the light of these results, cirsimaritin appears as a promising and viable alternative natural bioactive drug to treat many pathological conditions.
Collapse
Affiliation(s)
- Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza-Gare, Taza B.P. 1223, Morocco
| | - Imane Jaouadi
- Laboratory of Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, B.P. 133, Kenitra 14000, Morocco
| | - Rokia Ghchime
- Department of Clinical Neurophysiology, Hospital of Specialities, Rabat Institute, Ibn Sina University Hospital, Rabat 10056, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Kaoutar Harboul
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza-Gare, Taza B.P. 1223, Morocco
| | - Khalil Hammani
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza-Gare, Taza B.P. 1223, Morocco
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 109316 Moscow, Russia
- Biophotonics Center, Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya St., 127550 Moscow, Russia
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk Universtiy, 42130 Konya, Turkey
| | - Moon-Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02447, Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02447, Korea
| | - Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|