1
|
De Rose S, Sillo F, Ghirardo A, Perotto S, Schnitzler JP, Balestrini R. Integration of fungal transcriptomics and metabolomics provides insights into the early interaction between the ORM fungus Tulasnella sp. and the orchid Serapias vomeracea seeds. IMA Fungus 2024; 15:31. [PMID: 39456087 PMCID: PMC11503967 DOI: 10.1186/s43008-024-00165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
In nature, germination of orchid seeds and early plant development rely on a symbiotic association with orchid mycorrhizal (ORM) fungi. These fungi provide the host with the necessary nutrients and facilitate the transition from embryos to protocorms. Despite recent advances in omics technologies, our understanding of this symbiosis remains limited, particularly during the initial stages of the interaction. To address this gap, we employed transcriptomics and metabolomics to investigate the early responses occurring in the mycorrhizal fungus Tulasnella sp. isolate SV6 when co-cultivated with orchid seeds of Serapias vomeracea. The integration of data from gene expression and metabolite profiling revealed the activation of some fungal signalling pathways before the establishment of the symbiosis. Prior to seed contact, an indole-related metabolite was produced by the fungus, and significant changes in the fungal lipid profile occurred throughout the symbiotic process. Additionally, the expression of plant cell wall-degrading enzymes (PCWDEs) was observed during the pre-symbiotic stage, as the fungus approached the seeds, along with changes in amino acid metabolism. Thus, the dual-omics approach employed in this study yielded novel insights into the symbiotic relationship between orchids and ORM fungi and suggest that the ORM fungus responds to the presence of the orchid seeds prior to contact.
Collapse
Affiliation(s)
- Silvia De Rose
- Institute for Sustainable Plant Protection, National Research Council, Strada Delle Cacce 73, 10135, Turin, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Fabiano Sillo
- Institute for Sustainable Plant Protection, National Research Council, Strada Delle Cacce 73, 10135, Turin, Italy
| | - Andrea Ghirardo
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
2
|
Darrasse A, Tarkowski ŁP, Briand M, Lalanne D, Chen NWG, Barret M, Verdier J. A stage-dependent seed defense response to explain efficient seed transmission of Xanthomonas citri pv. fuscans to common bean. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39038880 DOI: 10.1111/pce.15037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Although seed represents an important means of plant pathogen dispersion, the seed-pathogen dialogue remains largely unexplored. A multiomic approach was performed at different seed developmental stages of common bean (Phaseolus vulgaris L.) during asymptomatic colonization by Xanthomonas citri pv. fuscans (Xcf), At the early seed developmental stages, we observed high transcriptional changes both in seeds with bacterial recognition and defense signal transduction genes, and in bacteria with up-regulation of the bacterial type 3 secretion system. This high transcriptional activity of defense genes in Xcf-colonized seeds during maturation refutes the widely diffused assumption considering seeds as passive carriers of microbes. At later seed maturation stages, few transcriptome changes indicated a less intense molecular dialogue between the host and the pathogen, but marked by changes in DNA methylation of plant defense genes, in response to Xcf colonization. We showed examples of pathogen-specific DNA methylations in colonized seeds acting as plant defense silencing to repress plant immune response during the germination process. Finally, we propose a novel plant-pathogen interaction model, specific to the seed tissues, highlighting the existence of distinct phases during seed-pathogen interaction with seeds being actively interacting with colonizing pathogens, then both belligerents switching to more passive mode at later stages.
Collapse
Affiliation(s)
- Armelle Darrasse
- University Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Martial Briand
- University Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - David Lalanne
- University Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Nicolas W G Chen
- University Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Matthieu Barret
- University Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Jerome Verdier
- University Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
3
|
Hubert B, Marchi M, Ly Vu J, Tranchant C, Tarkowski ŁP, Leprince O, Buitink J. A method to determine antifungal activity in seed exudates by nephelometry. PLANT METHODS 2024; 20:16. [PMID: 38287427 PMCID: PMC10826049 DOI: 10.1186/s13007-024-01144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND One of the levers towards alternative solutions to pesticides is to improve seed defenses against pathogens, but a better understanding is needed on the type and regulation of existing pathways during germination. Dormant seeds are able to defend themselves against microorganisms during cycles of rehydration and dehydration in the soil. During imbibition, seeds leak copious amounts of exudates. Here, we developed a nephelometry method to assay antimicrobial activity (AA) in tomato seed exudates as a proxy to assess level of defenses. RESULTS A protocol is described to determine the level of AA against the nonhost filamentous fungus Alternaria brassicicola in the exudates of tomato seeds and seedlings. The fungal and exudate concentrations can be adjusted to modulate the assay sensitivity, thereby providing a large window of AA detection. We established that AA in dormant seeds depends on the genotype. It ranged from very strong AA to complete absence of AA, even after prolonged imbibition. AA depends also on the stages of germination and seedling emergence. Exudates from germinated seeds and seedlings showed very strong AA, while those from dormant seeds exhibited less activity for the same imbibition time. The exudate AA did not impact the growth of a pathogenic fungus host of tomato, Alternaria alternata, illustrating the adaptation of this fungus to its host. CONCLUSIONS We demonstrate that our nephelometry method is a simple yet powerful bioassay to quantify AA in seed exudates. Different developmental stages from dormant seed to seedlings show different levels of AA in the exudate that vary between genotypes, highlighting a genetic diversity x developmental stage interaction in defense. These findings will be important to identify molecules in the exudates conferring antifungal properties and obtain a better understanding of the regulatory and biosynthetic pathways through the lifecycle of seeds, from dormant seeds until seedling emergence.
Collapse
Affiliation(s)
- Benjamin Hubert
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Muriel Marchi
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Joseph Ly Vu
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Camille Tranchant
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Łukasz P Tarkowski
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
- INRAE, Université de Strasbourg, UMR SVQV, Colmar, France
| | - Olivier Leprince
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Julia Buitink
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France.
| |
Collapse
|
4
|
Costantini S, Benedetti M, Pontiggia D, Giovannoni M, Cervone F, Mattei B, De Lorenzo G. Berberine bridge enzyme-like oxidases of cellodextrins and mixed-linked β-glucans control seed coat formation. PLANT PHYSIOLOGY 2023; 194:296-313. [PMID: 37590952 DOI: 10.1093/plphys/kiad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Plants have evolved various resistance mechanisms to cope with biotic stresses that threaten their survival. The BBE23 member (At5g44360/BBE23) of the Arabidopsis berberine bridge enzyme-like (BBE-l) protein family (Arabidopsis thaliana) has been characterized in this paper in parallel with the closely related and previously described CELLOX (At4g20860/BBE22). In addition to cellodextrins, both enzymes, renamed here as CELLODEXTRIN OXIDASE 2 and 1 (CELLOX2 and CELLOX1), respectively, oxidize the mixed-linked β-1→3/β-1→4-glucans (MLGs), recently described as capable of activating plant immunity, reinforcing the view that the BBE-l family includes members that are devoted to the control of the homeostasis of potential cell wall-derived damage-associated molecular patterns (DAMPs). The 2 putatively paralogous genes display different expression profiles. Unlike CELLOX1, CELLOX2 is not expressed in seedlings or adult plants and is not involved in immunity against Botrytis cinerea. Both are instead expressed in a concerted manner in the seed coat during development. Whereas CELLOX2 is expressed mainly during the heart stage, CELLOX1 is expressed at the immediately later stage, when the expression of CELLOX2 decreases. Analysis of seeds of cellox1 and cellox2 knockout mutants shows alterations in the coat structure: the columella area is smaller in cellox1, radial cell walls are thicker in both cellox1 and cellox2, and the mucilage halo is reduced in cellox2. However, the coat monosaccharide composition is not significantly altered, suggesting an alteration of the organization of the cell wall, thus reinforcing the notion that the architecture of the cell wall in specific organs is determined not only by the dynamics of the synthesis/degradation of the main polysaccharides but also by its enzymatic oxidation.
Collapse
Affiliation(s)
- Sara Costantini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Pontiggia
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, 00185 Rome, Italy
| | - Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Felice Cervone
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
Ortega-Cuadros M, Aligon S, Velasquez N, Verdier J, Grappin P. Arabidopsis transcriptome dataset of the response of imbibed wild-type and glucosinolate-deficient seeds to nitrogen-containing compounds. Data Brief 2023; 48:109047. [PMID: 37006386 PMCID: PMC10051019 DOI: 10.1016/j.dib.2023.109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
The presented RNAseq data were obtained from Arabidopsis seeds dry and 6h imbibed to describe, in wild-type and glucosinolate (GSL)-deficient genotypes, the response at the RNA level to nitrogen compounds, i.e., potassium nitrate (KNO3, 10mM), potassium thiocyanate (KSCN, 8µM). The cyp79B2 cyp79B3 (cyp79B2/B3) double mutant deficient in Indole GSL, the myb28 myb29 (myb28/29) double mutant deficient in aliphatic GSL, the quadruple mutant cyp79B2 cyp79B3 myb28 myb29 (qko) deficient in total GSL in the seed and the WT reference genotype in Col-0 background were used for the transcriptomic analysis. Total ARN was extracted using NucleoSpin® RNA Plant and Fungi kit. Library construction and sequencing were performed with DNBseq™ technology at Beijing Genomics Institute. FastQC was used to check reads quality and mapping analysis were made using a quasi-mapping alignment from Salmon. Gene expression changes in mutant seeds compared to WT were calculated using DESeq2 algorithms. This comparison with the qko, cyp79B2/B3 and myb28/29 mutants made it possible to identify 30220, 36885 and 23807 differentially expressed genes (DEGs), respectively. Mapping rate result was merge into a single report using MultiQC; graphic results were illustrated through Veen diagrams and volcano plots. Fastq raw data and count files from 45 samples are available in the repository Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI) and can be consulted with the data identification number GSE221567 at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE221567.
Collapse
Affiliation(s)
- Mailen Ortega-Cuadros
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, Angers F-49000, France
- Institute of Biology, University of Antioquia, Calle 67 N° 53-108, Medellín 050010, Colombia
| | - Sophie Aligon
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, Angers F-49000, France
| | - Nubia Velasquez
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, Angers F-49000, France
| | - Jerome Verdier
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, Angers F-49000, France
| | - Philippe Grappin
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, Angers F-49000, France
| |
Collapse
|