1
|
Dakwa R, Mozirandi W, Mukanganyama S. Antibacterial activity of Azanza garckeana extracts (Malvaceae) in vitro and their potential use in respiratory infections. Microb Pathog 2025; 198:107170. [PMID: 39613234 DOI: 10.1016/j.micpath.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
The ESKAPE pathogens, namely Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, pose a significant threat to individuals with compromised immune system, including children, people with underlying illnesses and patients primarily infected with viruses. Significant mortality rates have been documented as a consequence of severe pneumonia resulting from bacterial respiratory tract infections. Azanza garckeana has been reported to possess antibacterial and anti-inflammatory activities. This study aimed to determine the antibacterial activity of A. garckeana leaf and bark extracts against P. aeruginosa, K. pneumoniae, A. baumannii, and S. aureus. The broth microdilution method was used to evaluate antibacterial activity. The most active extracts were subjected to phytochemical analysis to identify types of bioactive compounds present using gas chromatograph mass spectrometry (GC‒MS). The effect of the extracts on the integrity of the bacterial membrane was performed using nucleic acid and protein leakage assay. Acetone bark extract was assessed for its potential antibiofilm activity using K. pneumoniae. The toxicity profiling of the most potent extracts was performed using sheep erythrocytes and mouse peritoneal cells. The hexane bark extract exhibited greater potency by inhibiting the growth of S. aureus and A. baumannii at a concentration of 200 μg/mL. GC-MS identified the presence of important bioactive compounds including, β-carotene, 9-hexadecen-1-ol, (Z)-, hexadecanoic acid, methyl ester, and 2,4-di-tert-butylphenol. Acetone bark extract exhibited antibacterial activity through disruption of bacterial membrane integrity, observed through significant nucleic acid and protein leakage. The acetone bark extract displayed promising antibiofilm activity against K. pneumoniae. Importantly, the extracts showed minimal toxicity, demonstrating less than 30 % haemolytic activity in sheep erythrocytes and were not toxic to the mouse peritoneal cells, instead boosting their growth. These findings suggest that A. garckeana may serve as a potential source of antibacterial lead agents for the management of respiratory infections.
Collapse
Affiliation(s)
- Ruvarashe Dakwa
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - Winnie Mozirandi
- Department of Biotechnology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Stanley Mukanganyama
- Department of Therapeutics, Natural Products Unit, African Institute of Biomedical Science and Technology (AiBST), Wilkins Hospital Block C, Corner J, Tongogara and R. Tangwena road, Harare, Zimbabwe.
| |
Collapse
|
2
|
Gomes-da-Silva NC, Correa LB, Gonzalez MM, Franca ARS, Alencar LMR, Rosas EC, Ricci-Junior E, Aguiar TKB, Souza PFN, Santos-Oliveira R. Nanoceria Anti-inflammatory and Antimicrobial Nanodrug: Cellular and Molecular Mechanism of Action. Curr Med Chem 2025; 32:1017-1032. [PMID: 38265391 DOI: 10.2174/0109298673285605231229112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Nanoceria is a well-known nanomaterial with various properties, including antioxidant, proangiogenic, and therapeutic effects. Despite its potential, there are still aspects that require further exploration, particularly its anti-inflammatory and antimicrobial activities. METHODS The global demand for novel anti-inflammatory and antimicrobial drugs underscores the significance of understanding nanoceria in both contexts. In this study, we evaluated the effect of nanoceria on macrophage polarization to better understand its anti-inflammatory effects. Additionally, we investigated the mechanism of action of nanoceria against Cryptococcus neoformans (ATCC 32045), Candida parapsilosis (ATCC 22019), Candida krusei (ATCC 6258), and Candida albicans. RESULTS The results demonstrated that nanoceria can polarize macrophages toward an anti-inflammatory profile, revealing the cellular mechanisms involved in the anti-inflammatory response. Concerning the antimicrobial effect, it was observed that nanoceria have a more pronounced impact on Candida parapsilosis, leading to the formation of pronounced pores on the surface of this species. CONCLUSION Finally, biochemical analysis revealed transitory alterations, mainly in liver enzymes. The data support the use of nanoceria as a potential anti-inflammatory and antimicrobial drug and elucidate some of the mechanisms involved, shedding light on the properties of this nanodrug.
Collapse
Affiliation(s)
- Natalia Cristina Gomes-da-Silva
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, RJ, Brazil
| | - Luana Barbosa Correa
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, RJ, Brazil
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
| | - M MartInez Gonzalez
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, RJ, Brazil
| | - Alefe Roger Silva Franca
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis, 65065690, MA, Brazil
| | - Luciana M R Alencar
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis, 65065690, MA, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
| | - Eduardo Ricci-Junior
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21941900, RJ, Brazil
| | | | - Pedro Filho Noronha Souza
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, 60430-275, CE, Brazil
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, RJ, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro, 23070200, RJ, Brazil
| |
Collapse
|
3
|
Kovačević Z, Čabarkapa I, Šarić L, Pajić M, Tomanić D, Kokić B, Božić DD. Natural Solutions to Antimicrobial Resistance: The Role of Essential Oils in Poultry Meat Preservation with Focus on Gram-Negative Bacteria. Foods 2024; 13:3905. [PMID: 39682977 DOI: 10.3390/foods13233905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The increase in antimicrobial resistance (AMR) is a major global health problem with implications on human and veterinary medicine, as well as food production. In the poultry industry, the overuse and misuse of antimicrobials has led to the development of resistant or multi-drug resistant (MDR) strains of bacteria such as Salmonella spp., Escherichia coli and Campylobacter spp., which pose a serious risk to meat safety and public health. The genetic transfer of resistance elements between poultry MDR bacteria and human pathogens further exacerbates the AMR crisis and highlights the urgent need for action. Traditional methods of preserving poultry meat, often based on synthetic chemicals, are increasingly being questioned due to their potential impact on human health and the environment. This situation has led to a shift towards natural, sustainable alternatives, such as plant-derived compounds, for meat preservation. Essential oils (EOs) have emerged as promising natural preservatives in the poultry meat industry offering a potential solution to the growing AMR problem by possessing inherent antimicrobial properties making them effective against a broad spectrum of pathogens. Their use in the preservation of poultry meat not only extends shelf life, but also reduces reliance on synthetic preservatives and antibiotics, which contribute significantly to AMR. The unique chemical composition of EOs, that contains a large number of different active compounds, minimizes the risk of bacteria developing resistance. Recent advances in nano-encapsulation technology have further improved the stability, bioavailability and efficacy of EOs, making them more suitable for commercial use. Hence, in this manuscript, the recent literature on the mechanisms of AMR in the most important Gram-negative poultry pathogens and antimicrobial properties of EOs on these meat isolates was reviewed. Additionally, chemical composition, extraction methods of EOs were discussed, as well as future directions of EOs as natural food preservatives. In conclusion, by integrating EOs into poultry meat preservation strategies, the industry can adopt more sustainable and health-conscious practices and ultimately contribute to global efforts to combat AMR.
Collapse
Affiliation(s)
- Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ivana Čabarkapa
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ljubiša Šarić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marko Pajić
- Department for Epizootiology, Clinical Diagnostic, Pathology and DDD, Scientific Veterinary Institute Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana Tomanić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Bojana Kokić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana D Božić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
4
|
Girija ASS. Acinetobacter baumannii as an oro-dental pathogen: a red alert!! J Appl Oral Sci 2024; 32:e20230382. [PMID: 38747806 PMCID: PMC11090480 DOI: 10.1590/1678-7757-2023-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/01/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVES This review highlights the existence and association of Acinetobacter baumannii with the oro-dental diseases, transforming this systemic pathogen into an oral pathogen. The review also hypothesizes possible reasons for the categorization of this pathogen as code blue due to its stealthy entry into the oral cavity. METHODOLOGY Study data were retrieved from various search engines reporting specifically on the association of A. baumannii in dental diseases and tray set-ups. Articles were also examined regarding obtained outcomes on A. baumannii biofilm formation, iron acquisitions, magnitude of antimicrobial resistance, and its role in the oral cancers. RESULTS A. baumannii is associated with the oro-dental diseases and various virulence factors attribute for the establishment and progression of oro-mucosal infections. Its presence in the oral cavity is frequent in oral microbiomes, conditions of impaired host immunity, age related illnesses, and hospitalized individuals. Many sources also contribute for its prevalence in the dental health care environment and the presence of drug resistant traits is also observed. Its association with oral cancers and oral squamous cell carcinoma is also evident. CONCLUSIONS The review calls for awareness on the emergence of A. baumannii in dental clinics and for the need for educational programs to monitor and control the sudden outbreaks of such virulent and resistant traits in the dental health care settings.
Collapse
Affiliation(s)
- A S Smiline Girija
- Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Department of Microbiology, Chennai-600077, Tamilnadu, India
| |
Collapse
|
5
|
de Souza GH, Vaz MS, Dos Santos Radai JA, Fraga TL, Rossato L, Simionatto S. Synergistic interaction of polymyxin B with carvacrol: antimicrobial strategy against polymyxin-resistant Klebsiella pneumoniae. Future Microbiol 2024; 19:181-193. [PMID: 38329374 DOI: 10.2217/fmb-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/09/2023] [Indexed: 02/09/2024] Open
Abstract
Objective: The antimicrobial activities of the synergistic combination of carvacrol and polymyxin B against polymyxin-resistant Klebsiella pneumoniae were evaluated. Methods: The methods employed checkerboard assays to investigate synergism, biofilm inhibition assessment and membrane integrity assay. In addition, the study included in vivo evaluation using a mouse infection model. Results: The checkerboard method evaluated 48 combinations, with 23 indicating synergistic action. Among these, carvacrol 10 mg/kg plus polymyxin B 2 mg/kg exhibited in vivo antimicrobial activity in a mouse model of infection, resulting in increased survival and a significant decrease in bacterial load in the blood. Conclusion: Polymyxin in synergy with carvacrol represents a promising alternative to be explored in the development of new antimicrobials.
Collapse
Affiliation(s)
- Gleyce Ha de Souza
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Marcia Sm Vaz
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Joyce A Dos Santos Radai
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Thiago L Fraga
- Centro Universitário da Grande Dourados - UNIGRAN, Dourados, Mato Grosso do Sul, 79824-900, Brazil
| | - Luana Rossato
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Simone Simionatto
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| |
Collapse
|
6
|
Duque HM, Dos Santos C, Brango-Vanegas J, Díaz-Martín RD, Dias SC, Franco OL. Unwrapping the structural and functional features of antimicrobial peptides from wasp venoms. Pharmacol Res 2024; 200:107069. [PMID: 38218356 DOI: 10.1016/j.phrs.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The study of wasp venoms has captured attention due to the presence of a wide variety of active compounds, revealing a diverse array of biological effects. Among these compounds, certain antimicrobial peptides (AMPs) such as mastoparans and chemotactic peptides have emerged as significant players, characterized by their unique amphipathic short linear alpha-helical structure. These peptides exhibit not only antibiotic properties but also a range of other biological activities, which are related to their ability to interact with biological membranes to varying degrees. This review article aims to provide updated insights into the structure/function relationships of AMPs derived from wasp venoms, linking this knowledge to the potential development of innovative treatments against infections.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil.
| | - Cristiane Dos Santos
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - Ruben Dario Díaz-Martín
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; Program in Animal Biology, Universidade de Brasília, Brasília, DF70910-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| |
Collapse
|
7
|
Russo I, Fischer J, Uelze L, Napoleoni M, Schiavano GF, Andreoni F, Brandi G, Amagliani G. From farm to fork: Spread of a multidrug resistant Salmonella Infantis clone encoding bla CTX-M-1 on pESI-like plasmids in Central Italy. Int J Food Microbiol 2024; 410:110490. [PMID: 37992554 DOI: 10.1016/j.ijfoodmicro.2023.110490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/24/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) is one of the "top five Salmonella serovars" of clinical significance in the European Union (EU). Antimicrobial resistant and extended spectrum β-lactamase (ESBL) AmpC-producing S. Infantis have been described in food production systems and human clinical samples in Italy. Recently, an increase of MDR S. Infantis carrying blaCTX-M genes involved in 3rd generation cephalosporin resistance was noticed in the EU, including Italy, mainly due to the spread of S. Infantis harboring a pESI-like plasmid. The aim of this study was to investigate the occurrence of the S. Infantis pESI-like plasmid among antibiotic resistant S. Infantis strains isolated at different points of the food chain, and to provide a phylogenetic analysis to gain further insight on their transmission pathways from 'farm to fork'. MDR S. Infantis strains (n. 35) isolated from 2016 to 2021 at different stages of the food chain (animals, food, food-related environments, and humans) were investigated with in depth molecular characterization using real-time PCR, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and whole genome sequencing (WGS). Our study reported the occurrence of S. Infantis strains harboring pESI-like plasmids, carrying blaCTX-M-1 genes, in Central Italy, at different sampling points along the food chain. Results confirmed the presence of a plasmid with a molecular size around 224-310 kb, thus consistent with the pESI-like, in 97 % of the 35 samples investigated. Two variants of S. Infantis pESI-like IncFIB(K)_1_Kpn3 were detected, one associated with the European clone carrying blaCTX-M-1 (21 isolates) and the other associated with U.S. isolates carrying blaCTX-M-65 (2 isolates, pESI-like U.S. variant). The majority was resistant to 3rd generation cephalosporins but none of the strains tested positive for the carbapenemase encoding genes. A total of 118 virulence genes were identified in isolates harboring the pESI-like plasmid. cgMLST and SNP-based analysis revealed the presence of one main cluster, composed by strains isolated from the environment, animals, food and humans. The results of this investigation underline the importance of phylogenetic studies to monitor and understand pathogen and AMR spread in a One Health approach.
Collapse
Affiliation(s)
- Ilaria Russo
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Jennie Fischer
- BfR, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Laura Uelze
- BfR, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Maira Napoleoni
- Regional Reference Center for Enteric Pathogens Marche, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | | | - Francesca Andreoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy; Clinical Pathology, Urbino Hospital, AST Pesaro-Urbino, Marche, Urbino, Italy
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
8
|
Romanescu M, Oprean C, Lombrea A, Badescu B, Teodor A, Constantin GD, Andor M, Folescu R, Muntean D, Danciu C, Dalleur O, Batrina SL, Cretu O, Buda VO. Current State of Knowledge Regarding WHO High Priority Pathogens-Resistance Mechanisms and Proposed Solutions through Candidates Such as Essential Oils: A Systematic Review. Int J Mol Sci 2023; 24:9727. [PMID: 37298678 PMCID: PMC10253476 DOI: 10.3390/ijms24119727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Combating antimicrobial resistance (AMR) is among the 10 global health issues identified by the World Health Organization (WHO) in 2021. While AMR is a naturally occurring process, the inappropriate use of antibiotics in different settings and legislative gaps has led to its rapid progression. As a result, AMR has grown into a serious global menace that impacts not only humans but also animals and, ultimately, the entire environment. Thus, effective prophylactic measures, as well as more potent and non-toxic antimicrobial agents, are pressingly needed. The antimicrobial activity of essential oils (EOs) is supported by consistent research in the field. Although EOs have been used for centuries, they are newcomers when it comes to managing infections in clinical settings; it is mainly because methodological settings are largely non-overlapping and there are insufficient data regarding EOs' in vivo activity and toxicity. This review considers the concept of AMR and its main determinants, the modality by which the issue has been globally addressed and the potential of EOs as alternative or auxiliary therapy. The focus is shifted towards the pathogenesis, mechanism of resistance and activity of several EOs against the six high priority pathogens listed by WHO in 2017, for which new therapeutic solutions are pressingly required.
Collapse
Affiliation(s)
- Mirabela Romanescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Camelia Oprean
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- OncoGen Centre, County Hospital ‘Pius Branzeu’, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Adelina Lombrea
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Bianca Badescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Ana Teodor
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - George D. Constantin
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Roxana Folescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Delia Muntean
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Olivia Dalleur
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Stefan Laurentiu Batrina
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Valentina Oana Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Ineu City Hospital, 2 Republicii Street, 315300 Ineu, Romania
| |
Collapse
|
9
|
Foschi C, Giorgi B, Ambretti S, Lazzarotto T, Violante FS. Real-Life Assessment of the Ability of an Ultraviolet C Lamp (SanificaAria 200, Beghelli) to Inactivate Airborne Microorganisms in a Healthcare Environment. Life (Basel) 2023; 13:life13051221. [PMID: 37240866 DOI: 10.3390/life13051221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Airborne-mediated microbial diseases represent one of the major challenges to public health. Ultraviolet C radiation (UVC) is among the different sanitation techniques useful to reduce the risk of infection in healthcare facilities. Previous studies about the germicidal activity of UVC were mainly performed in artificial settings or in vitro models. This study aimed to assess the sanitizing effectiveness of a UVC device (SanificaAria 200, Beghelli, Valsamoggia, Bologna, Italy) in 'real-life' conditions by evaluating its ability to reduce microbial loads in several hospital settings during routine daily activities. The efficacy of the UVC lamp in reducing the bacterial component was evaluated by microbial culture through the collection of air samples in different healthcare settings at different times (30 min-24 h) after turning on the device. To assess the anti-viral activity, air samplings were carried out in a room where a SARS-CoV-2-positive subject was present. The UVC device showed good antibacterial properties against a wide range of microbial species after 6 h of activity. It was effective against possible multi-drug resistant microorganisms (e.g., Pseudomonas spp., Acinetobacter spp.) and spore-forming bacteria (e.g., Bacillus spp.). In addition, the UVC lamp was able to inactivate SARS-CoV-2 in just one hour. Thanks to its effectiveness and safety, SanificaAria 200 could be useful to inactivate airborne pathogens and reduce health risks.
Collapse
Affiliation(s)
- Claudio Foschi
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Section of Microbiology, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Beatrice Giorgi
- Division of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Simone Ambretti
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Section of Microbiology, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Section of Microbiology, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Francesco Saverio Violante
- Division of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Occupational Medicine Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
10
|
Yang C, Wang Z, Wan J, Qi T, Zou L. Burkholderia gladioli strain KJ-34 exhibits broad-spectrum antifungal activity. FRONTIERS IN PLANT SCIENCE 2023; 14:1097044. [PMID: 36938063 PMCID: PMC10020716 DOI: 10.3389/fpls.2023.1097044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Plant pathogens are one of the major constraints on worldwide food production. The antibiotic properties of microbes identified as effective in managing plant pathogens are well documented. METHODS Here, we used antagonism experiments and untargeted metabolomics to isolate the potentially antifungal molecules produced by KJ-34. RESULTS KJ-34 is a potential biocontrol bacterium isolated from the rhizosphere soil of rice and can fight multiple fungal pathogens (i.e. Ustilaginoidea virens, Alternaria solani, Fusarium oxysporum, Phytophthora capsica, Corynespora cassiicola). The favoured fermentation conditions are determined and the fermentation broth treatment can significantly inhibit the infection of Magnaporthe oryzae and Botryis cinerea. The fermentation broth suppression ratio is 75% and 82%, respectively. Fermentation broth treatment disrupted the spore germination and led to malformation of hyphae. Additionally, we found that the molecular weight of antifungal products were less than 1000 Da through semipermeable membranes on solid medium assay. To search the potentially antifungal molecules that produce by KJ-34, we used comparative and bioinformatics analyses of fermentation broth before and after optimization by mass spectrometry. Untargeted metabolomics analyses are presumed to have a library of antifungal agents including benzoylstaurosporine, morellin and scopolamine. DISCUSSION These results suggest that KJ-34 produced various biological control agents to suppress multiple phytopathogenic fungi and showed a strong potential in the ecological technologies of prevention and protection.
Collapse
Affiliation(s)
- Chunnan Yang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
- Kaijiang County Plant Protection and Quarantine Station, Kaijiang County Agricultural and Rural Bureau, Dazhou, Sichuan, China
| | - Zhihui Wang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
- Kaijiang County Plant Protection and Quarantine Station, Kaijiang County Agricultural and Rural Bureau, Dazhou, Sichuan, China
| | - Jiangxue Wan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Tuo Qi
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| |
Collapse
|
11
|
de Almeida MP, Rodrigues C, Novais Â, Grosso F, Leopold N, Peixe L, Franco R, Pereira E. Silver Nanostar-Based SERS for the Discrimination of Clinically Relevant Acinetobacter baumannii and Klebsiella pneumoniae Species and Clones. BIOSENSORS 2023; 13:149. [PMID: 36831915 PMCID: PMC9953856 DOI: 10.3390/bios13020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The development of rapid, reliable, and low-cost methods that enable discrimination among clinically relevant bacteria is crucial, with emphasis on those listed as WHO Global Priority 1 Critical Pathogens, such as carbapenem-resistant Acinetobacter baumannii and carbapenem-resistant or ESBL-producing Klebsiella pneumoniae. To address this problem, we developed and validated a protocol of surface-enhanced Raman spectroscopy (SERS) with silver nanostars for the discrimination of A. baumannii and K. pneumoniae species, and their globally disseminated and clinically relevant antibiotic resistant clones. Isolates were characterized by mixing bacterial colonies with silver nanostars, followed by deposition on filter paper for SERS spectrum acquisition. Spectral data were processed with unsupervised and supervised multivariate data analysis methods, including principal component analysis (PCA) and partial least-squares discriminant analysis (PLSDA), respectively. Our proposed SERS procedure using silver nanostars adsorbed to the bacteria, followed by multivariate data analysis, enabled differentiation between and within species. This pilot study demonstrates the potential of SERS for the rapid discrimination of clinically relevant A. baumannii and K. pneumoniae species and clones, displaying several advantages such as the ease of silver nanostars synthesis and the possible use of a handheld spectrometer, which makes this approach ideal for point-of-care applications.
Collapse
Affiliation(s)
- Miguel Peixoto de Almeida
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Carla Rodrigues
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ângela Novais
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- 4TOXRUN, Toxicology Research Unit, University Institute of Health Sciences, CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Filipa Grosso
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Nicolae Leopold
- Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ricardo Franco
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Eulália Pereira
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
12
|
Sunarno S, Puspandari N, Fitriana F, Nikmah UA, Idrus HH, Panjaitan NSD. Extended spectrum beta lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in Indonesia and South East Asian countries: GLASS Data 2018. AIMS Microbiol 2023; 9:218-227. [PMID: 37091820 PMCID: PMC10113165 DOI: 10.3934/microbiol.2023013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/12/2023] [Indexed: 04/25/2023] Open
Abstract
Antimicrobial resistance is the rising global health issue that should not be ignored. This problem needs to be addressed and professionally handled since it is starting to threaten global health, which eventually could lead to disaster. Extended spectrum beta lactamase (ESBL)-producing bacteria were found threatening lives, since most antibiotics were found to not be effective in treating patients with infections caused by those bacteria. ESBL-producing Escherichia coli and Klebsiella pneumoniae are the two most reported bacteria in causing the bacteremia and nosocomial infections worldwide. In this article, the prevalence of ESBL-producing E. coli and K. pneumoniae in causing blood stream and urinary tract infections in Indonesia were compared to the neighboring countries based on the global antimicrobial resistance surveillance system performed worldwide by World Health Organization (WHO). In this article, the prevalence of ESBL-producing E. coli and K. pneumoniae in Indonesia and its neighboring countries were assayed and compared in order to evaluate the antimicrobial resistances. By comparing the prevalence data to the neighboring countries, some insightful evidence and information was served to support improved health in Indonesia. Some hurdles and strategies in combating the antimicrobial resistances were further discussed. Eventually, an alternate solution to overcome the antimicrobial drug resistance should be well-provided, studied and implemented globally.
Collapse
Affiliation(s)
- Sunarno Sunarno
- Center for Research and Development of Biomedical and Basic Health Technology, Jakarta, Indonesia
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Bogor No. 490–Bogor Km. 46, West Java, Indonesia
| | - Nelly Puspandari
- Center for Research and Development of Biomedical and Basic Health Technology, Jakarta, Indonesia
- Center for Health Resilience and Resource Policy, Health Policy Agency, Jakarta, Indonesia
| | - Fitriana Fitriana
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Bogor No. 490–Bogor Km. 46, West Java, Indonesia
| | - Uly Alfi Nikmah
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Bogor No. 490–Bogor Km. 46, West Java, Indonesia
| | - Hasta Handayani Idrus
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Bogor No. 490–Bogor Km. 46, West Java, Indonesia
| | - Novaria Sari Dewi Panjaitan
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Bogor No. 490–Bogor Km. 46, West Java, Indonesia
- * Correspondence: ; Tel: +62-81398474815
| |
Collapse
|
13
|
Zhou YX, Cao XY, Peng C. Antimicrobial activity of natural products against MDR bacteria: A scientometric visualization analysis. Front Pharmacol 2022; 13:1000974. [PMID: 36225591 PMCID: PMC9548655 DOI: 10.3389/fphar.2022.1000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: A growing number of studies have demonstrated the antimicrobial activity of natural products against multidrug-resistant bacteria. This study aimed to apply scientometric method to explore the current status and future trends in this field. Methods: All relevant original articles and reviews for the period 1997–2021 were retrieved from the Web of Science Core Collection database. VOSviewer, a scientometric software, and an online bibliometric analysis platform were used to conduct visualization study. Results: A total of 1,267 papers were included, including 1,005 original articles and 262 reviews. The United States and India made the largest contribution in this field. The University of Dschang from Cameroon produced the most publications. Coutinho HDM, Kuete V, and Gibbons S were key researchers, as they published a great many articles and were co-cited in numerous publications. Frontiers in Microbiology and Antimicrobial Agents and Chemotherapy were the most influential journals with the highest number of publications and co-citations, respectively. “Medicinal plants”, “methicillin-resistant Staphylococcus aureus”, “biofilm”, “minimum inhibitory concentration”, and “efflux pumps” were the most frequently used keywords, so these terms are presumed to be the current hot topics. All the included keywords could be roughly divided into four major themes, of which the theme of “natural product development approach” had attracted much attention in recent years. Furthermore, “Pseudomonas aeruginosa”, “nanoparticles”, “green synthesis”, “antimicrobial peptides”, “antibiofilm”, “biosynthetic gene clusters”, and “molecular dynamics simulation” had the latest average appearance year, indicating that these topics may become the research hot spots in the coming years. Conclusion: This study performed a scientometric analysis of the antibacterial activity of natural products against multidrug-resistant bacteria from a holistic perspective. It is hoped to provide novel and useful data for scientific research, and help researchers to explore this field more intuitively and effectively.
Collapse
Affiliation(s)
- Yan-Xi Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Library, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Yu Cao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng,
| |
Collapse
|