1
|
Ullah N, Qian F, Geng R, Xue Y, Guan W, Ji G, Li H, Huang Q, Cai G, Yan G, Wu X. Root system architecture change in response to waterlogging stress in a 448 global collection of rapeseeds (Brassica napus L.). PLANTA 2024; 259:95. [PMID: 38512412 DOI: 10.1007/s00425-024-04369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
MAIN CONCLUSIONS A novel image-based screening method for precisely identifying genotypic variations in rapeseed RSA under waterlogging stress was developed. Five key root traits were confirmed as good indicators of waterlogging and might be employed in breeding, particularly when using the MFVW approach. Waterlogging is a vital environmental factor that has detrimental effects on the growth and development of rapeseed (Brassica napus L.). Plant roots suffer from hypoxia under waterlogging, which ultimately confers yield penalty. Therefore, it is crucially important to understand the genetic variation of root system architecture (RSA) in response to waterlogging stress to guide the selection of new tolerant cultivars with favorable roots. This research was conducted to investigate RSA traits using image-based screening techniques to better understand how RSA changes over time during waterlogging at the seedling stage. First, we performed a t-test by comparing the relative root trait value between four tolerant and four sensitive accessions. The most important root characteristics associated with waterlogging tolerance at 12 h are total root length (TRL), total root surface area (TRSA), total root volume (TRV), total number of tips (TNT), and total number of forks (TNF). The root structures of 448 rapeseed accessions with or without waterlogging showed notable genetic diversity, and all traits were generally restrained under waterlogging conditions, except for the total root average diameter. Additionally, according to the evaluation and integration analysis of 448 accessions, we identified that five traits, TRL, TRSA, TRV, TNT, and TNF, were the most reliable traits for screening waterlogging-tolerant accessions. Using analysis of the membership function value (MFVW) and D-value of the five selected traits, 25 extremely waterlogging-tolerant materials were screened out. Waterlogging significantly reduced RSA, inhibiting root growth compared to the control. Additionally, waterlogging increased lipid peroxidation, accompanied by a decrease in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). This study effectively improves our understanding of the response of RSA to waterlogging. The image-based screening method developed in this study provides a new scientific guidance for quickly examining the basic RSA changes and precisely predicting waterlogging-tolerant rapeseed germplasms, thus expanding the genetic diversity of waterlogging-tolerant rapeseed germplasm available for breeding.
Collapse
Affiliation(s)
- Naseeb Ullah
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fang Qian
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rudan Geng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yujun Xue
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wenjie Guan
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Gaoxiang Ji
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Hao Li
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Qian Huang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Guangqin Cai
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Guixin Yan
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Xiaoming Wu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
2
|
Zhou T, Sun SS, Song HL, Chen JF, Yue CP, Huang JY, Feng YN, Hua YP. Morpho-physiological, Genomic, and Transcriptional Diversities in Response to Potassium Deficiency in Rapeseed ( Brassica napus L.) Genotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2381-2396. [PMID: 38232380 DOI: 10.1021/acs.jafc.3c06694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Variations in the resistance to potassium (K) deficiency among rapeseed genotypes emphasize complicated regulatory mechanisms. In this study, a low-K-sensitivity accession (L49) responded to K deficiency with smaller biomasses, severe leaf chlorosis, weaker photosynthesis ability, and deformed stomata morphology compared to a low-K resistant accession (H280). H280 accumulated more K+ than L49 under low K. Whole-genome resequencing (WGS) revealed a total of 5,538,622 single nucleotide polymorphisms (SNPs) and 859,184 insertions/deletions (InDels) between H280 and L49. RNA-seq identified more differentially expressed K+ transporter genes with higher expression in H280 than in L49 under K deficiency. Based on the K+ profiles, differential expression profiling, weighted gene coexpression network analysis, and WGS data between H280 and L49, BnaC4.AKT1 was proposed to be mainly responsible for root K absorption-mediated low K resistance. BnaC4.AKT1 was expressed preferentially in the roots and localized on the plasma membrane. An SNP and an InDel found in the promoter region of BnaC4.AKT1 were proposed to be responsible for its differential expression between rapeseed genotypes. This study identified a gene resource for improving low-K resistance. It also facilitates an integrated knowledge of the differential physiological and transcriptional responses to K deficiency in rapeseed genotypes.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Si-Si Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hai-Li Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin-Yong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Ibrahim S, Ahmad N, Kuang L, Li K, Tian Z, Sadau SB, Tajo SM, Wang X, Wang H, Dun X. Transcriptome analysis reveals key regulatory genes for root growth related to potassium utilization efficiency in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1194914. [PMID: 37546248 PMCID: PMC10400329 DOI: 10.3389/fpls.2023.1194914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Root system architecture (RSA) is the primary predictor of nutrient intake and significantly influences potassium utilization efficiency (KUE). Uncertainty persists regarding the genetic factors governing root growth in rapeseed. The root transcriptome analysis reveals the genetic basis driving crop root growth. In this study, RNA-seq was used to profile the overall transcriptome in the root tissue of 20 Brassica napus accessions with high and low KUE. 71,437 genes in the roots displayed variable expression profiles between the two contrasting genotype groups. The 212 genes that had varied expression levels between the high and low KUE lines were found using a pairwise comparison approach. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classification analysis revealed that the DEGs implicated in hormone and signaling pathways, as well as glucose, lipid, and amino acid metabolism, were all differently regulated in the rapeseed root system. Additionally, we discovered 33 transcription factors (TFs) that control root development were differentially expressed. By combining differential expression analysis, weighted gene co-expression network analysis (WGCNA), and recent genome-wide association study (GWAS) results, four candidate genes were identified as essential hub genes. These potential genes were located fewer than 100 kb from the peak SNPs of QTL clusters, and it was hypothesized that they regulated the formation of the root system. Three of the four hub genes' homologs-BnaC04G0560400ZS, BnaC04G0560400ZS, and BnaA03G0073500ZS-have been shown to control root development in earlier research. The information produced by our transcriptome profiling could be useful in revealing the molecular processes involved in the growth of rapeseed roots in response to KUE.
Collapse
Affiliation(s)
- Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Plant Biology, Faculty of Life Sciences, College of Natural and Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Keqi Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Salisu Bello Sadau
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Sani Muhammad Tajo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|