1
|
Batool R, Xuelian G, Hui D, Xiuzhen L, Umer MJ, Rwomushana I, Ali A, Attia KA, Jingfei G, Zhenying W. Endophytic Fungi-Mediated Defense Signaling in Maize: Unraveling the Role of WRKY36 in Regulating Immunity against Spodoptera frugiperda. PHYSIOLOGIA PLANTARUM 2024; 176:e14243. [PMID: 38467539 DOI: 10.1111/ppl.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Seed priming with beneficial endophytic fungi is an emerging sustainable strategy for enhancing plant resistance against insect pests. This study examined the effects of Beauvaria bassiana Bb20091317 and Metarhizium rileyi MrCDTLJ1 fungal colonization on maize growth, defence signalling, benzoxazinoid levels and gene expression. The colonization did not adversely affect plant growth but reduced larval weights of Spodoptera frugiperda. Maize leaves treated with M. rileyi exhibited higher levels of jasmonic acid, jasmonoyl-Isoleucine, salicylic acid, and indole acetic acid compared to control. B. bassiana and M. rileyi accelerated phytohormone increase upon S. frugiperda herbivory. Gene expression analysis revealed modulation of benzoxazinoid biosynthesis genes. We further elucidated the immune regulatory role of the transcription factor zmWRKY36 using virus-induced gene silencing (VIGS) in maize. zmWRKY36 positively regulates maize immunity against S. frugiperda, likely by interacting with defense-related proteins. Transient overexpression of zmWRKY36 in tobacco-induced cell death, while silencing in maize reduced chitin-triggered reactive oxygen species burst, confirming its immune function. Overall, B. bassiana and M. rileyi successfully colonized maize, impacting larval growth, defense signalling, and zmWRKY36-mediated resistance. This sheds light on maize-endophyte-insect interactions for sustainable plant protection.
Collapse
Affiliation(s)
- Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gou Xuelian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Dong Hui
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Long Xiuzhen
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Muhammad Jawad Umer
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | | | - Abid Ali
- Department of Entomology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | - Guo Jingfei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wang Zhenying
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Li Y, Cai L, Ding T, Tian E, Yan X, Wang X, Zhang J, Yu K, Chen Z. Comparative Transcriptome Analysis Reveals the Molecular Basis of Brassica napus in Response to Aphid Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2855. [PMID: 37571009 PMCID: PMC10421284 DOI: 10.3390/plants12152855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Rapeseed is a globally important economic crop that can be severely impacted by aphids. However, our understanding of rapeseed resistance to aphid stress is very limited. In this study, we analyzed the resistance characteristics of the low aphid-susceptible variety APL01 and the highly aphid-susceptible variety Holly in response to aphid stress. APL01 had a more significant inhibitory effect on aphid proliferation compared with Holly during the early stage of inoculation, whereas Holly showed stronger tolerance to aphid stress compared with APL01 during the later stage of inoculation. Through transcriptome, physiological, and gene expression analyses, it was revealed that chitinase activity, catalase activity, calcium signal transduction, and activation of systemic acquired resistance might be involved in aphid resistance in B. napus. The degree of inhibition of photosynthesis in plants under aphid stress directly determines the tolerance of B. napus to aphid stress. Furthermore, four promising candidate genes were screened from eight genes related to rapeseed response to biotic stress through RT-qPCR analysis of gene expression levels. These research findings represent an important step forward in understanding the resistance of rapeseed to aphid stress and provide a solid foundation for the cloning of genes responsible for this resistance.
Collapse
Affiliation(s)
- Yuanhong Li
- College of Agriculture, Guizhou University, Guiyang 550025, China; (Y.L.); (L.C.); (T.D.); (E.T.)
| | - Lei Cai
- College of Agriculture, Guizhou University, Guiyang 550025, China; (Y.L.); (L.C.); (T.D.); (E.T.)
- Center for Research and Development of Fine Chemical, Guizhou University, Guiyang 550025, China
| | - Ting Ding
- College of Agriculture, Guizhou University, Guiyang 550025, China; (Y.L.); (L.C.); (T.D.); (E.T.)
| | - Entang Tian
- College of Agriculture, Guizhou University, Guiyang 550025, China; (Y.L.); (L.C.); (T.D.); (E.T.)
| | - Xiaohong Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Xiaodong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; (X.W.); (J.Z.)
| | - Jiefu Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; (X.W.); (J.Z.)
| | - Kunjiang Yu
- College of Agriculture, Guizhou University, Guiyang 550025, China; (Y.L.); (L.C.); (T.D.); (E.T.)
- Center for Research and Development of Fine Chemical, Guizhou University, Guiyang 550025, China
- Guangxi Tianyuan Biochemical Co., Ltd., Nanning 530009, China
| | - Zhuo Chen
- Center for Research and Development of Fine Chemical, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Wei W, Stewart CN. Biosafety and Ecological Assessment of Genetically Engineered and Edited Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:2551. [PMID: 37447112 DOI: 10.3390/plants12132551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Nearly three decades have passed since the first commercial cultivation of genetically engineered (GE) crops [...].
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Charles Neal Stewart
- Department of Plant Sciences and Center for Agricultural Synthetic Biology, 112 Plant Biotechnology Building, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|