1
|
Yang YT, Zhang Y, Bian Y, Zhu J, Feng XS. Trends in extraction and purification methods of Lignans in plant-derived foods. Food Chem X 2025; 26:102249. [PMID: 39995409 PMCID: PMC11848485 DOI: 10.1016/j.fochx.2025.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Lignans are widely used as dietary supplements within health foods. However, excess addition of lignans can induce adverse reactions, therefore, it is necessary to develop rapid, effective, economical, and environmentally friendly extraction and purification methods to enhance lignan extraction efficiency. Recently, the advancement of sample pretreatment has been primarily directed towards the application of novel extraction solvents (e.g., supramolecular solvents) in dispersive liquid-liquid microextraction, the miniaturization of solid-phase extraction, the utilization of innovative adsorbent materials in dispersive solid-phase microextraction and matrix-assisted solid-phase extraction, and the employment of subcritical water extraction technology. Up to now, no systematic review has encompassed these advancements. Consequently, this review provides a comprehensive overview of the extraction and purification methods of lignans from plant-derived foods since 2017, with a particular focus on the application of microextraction technologies and new materials. It also analyzes the advantages and disadvantages of these methods and discusses their future developing trends.
Collapse
Affiliation(s)
- Yu-tong Yang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Juan Zhu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xue-song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| |
Collapse
|
2
|
Kim HM, Kim CY. Identification of Lignans. Methods Mol Biol 2025; 2895:165-176. [PMID: 39885030 DOI: 10.1007/978-1-0716-4350-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Lignans have garnered significant interest in various fields of pharmaceuticals, nutrition, and pesticides due to their diverse biological activities. This chapter primarily focuses on the extraction and purification methods of lignans from Schisandra, followed by an extensive examination of qualitative and quantitative analytical techniques, including thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Additionally, methods for structural analysis using nuclear magnetic resonance (NMR) are briefly summarized. The chapter also details approaches for determining the relative and absolute composition of lignan compounds, with illustrative examples provided.
Collapse
Affiliation(s)
- Hye Mi Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences and Technology, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Chul Young Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences and Technology, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Xu Y, Xin J, Sun Y, Wang X, Sun L, Zhao F, Niu C, Liu S. Mechanisms of Sepsis-Induced Acute Lung Injury and Advancements of Natural Small Molecules in Its Treatment. Pharmaceuticals (Basel) 2024; 17:472. [PMID: 38675431 PMCID: PMC11054595 DOI: 10.3390/ph17040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI), characterized by widespread lung dysfunction, is associated with significant morbidity and mortality due to the lack of effective pharmacological treatments available clinically. Small-molecule compounds derived from natural products represent an innovative source and have demonstrated therapeutic potential against sepsis-induced ALI. These natural small molecules may provide a promising alternative treatment option for sepsis-induced ALI. This review aims to summarize the pathogenesis of sepsis and potential therapeutic targets. It assembles critical updates (from 2014 to 2024) on natural small molecules with therapeutic potential against sepsis-induced ALI, detailing their sources, structures, effects, and mechanisms of action.
Collapse
Affiliation(s)
- Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Lili Sun
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| |
Collapse
|
4
|
Kato-Noguchi H, Takahashi Y, Tojo S, Teruya T. Isolation and Identification of Allelopathic Substances from Forsythia suspensa Leaves, and Their Metabolism and Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:575. [PMID: 38475422 DOI: 10.3390/plants13050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
The fruit of Forsythia suspensa (Thunb.) Vahl has been used in traditional Chinese medicine as "Forsythiae fructus". The species is also grown in parks and gardens, and on streets and building lots, as an ornamental plant, but it requires pruning. In this study, the allelopathic activity and allelopathic substances in the leaves of pruned branches of F. suspensa were investigated to determine any potential application. The leaf extracts of F. suspensa showed growth inhibitory activity against three weed species; Echinochloa crus-galli, Lolium multiflorum, and Vulpia myuros. Two allelopathic substances in the extracts were isolated through the bioassay-guided purification process, and identified as (-)-matairesinol and (-)-arctigenin. (-)-Matairesinol and (-)-arctigenin, which showed significant growth inhibitory activity at concentrations greater than 0.3 mM in vitro. The inhibitory activity of (-)-arctigenin was greater than that of (-)-matairesinol. However, both compounds were more active than (+)-pinolesinol which is their precursor in the biosynthetic pathway. The investigation suggests that F. suspensa leaves are allelopathic, and (-)-matairesinol and (-)-arctigenin may contribute to the growth inhibitory activities. Therefore, the leaves of the pruned branches can be applied as a weed management strategy in some agricultural practices such as using the leaf extracts in a foliar spray and the leaves in a soil mixture, thereby reducing the dependency on synthetic herbicides in the crop cultivation and contributing to developing eco-friendly agriculture.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | - Yuga Takahashi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | - Shunya Tojo
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| |
Collapse
|
5
|
Bailly C. Etoposide: A rider on the cytokine storm. Cytokine 2023; 168:156234. [PMID: 37269699 DOI: 10.1016/j.cyto.2023.156234] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023]
Abstract
For more than 40 years, the epipodophyllotoxin drug etoposide is prescribed to treat cancer. This semi-synthetic compound remains extensively used to treat advanced small-cell lung cancer and in various chemotherapy regimen for autologous stem cell transplantation, and other anticancer protocols. Etoposide is a potent topoisomerase II poison, causing double-stranded DNA breaks which lead to cell death if they are not repaired. It is also a genotoxic compound, responsible for severe side effects and secondary leukemia occasionally. Beyond its well-recognized function as an inducer of cancer cell death (a "killer on the road"), etoposide is also useful to treat immune-mediated inflammatory diseases associated with a cytokine storm syndrome. The drug is essential to the treatment of hemophagocytic lymphohistiocytosis (HLH) and the macrophage activation syndrome (MAS), in combination with a corticosteroid and other drugs. The use of etoposide to treat HLH, either familial or secondary to a viral or parasitic infection, or treatment-induced HLH and MAS is reviewed here. Etoposide dampens inflammation in HLH patients via an inhibition of the production of pro-inflammatory mediators, such as IL-6, IL-10, IL-18, IFN-γ and TNF-α, and reduction of the secretion of the alarmin HMGB1. The modulation of cytokines production by etoposide contributes to deactivate T cells and to dampen the immune stimulation associated to the cytokine storm. This review discussed the clinical benefits and mechanism of action of etoposide (a "rider on the storm") in the context of immune-mediated inflammatory diseases, notably life-threatening HLH and MAS. The question arises as to whether the two faces of etoposide action can apply to other topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France.
| |
Collapse
|
6
|
Kato-Noguchi H, Hamada Y, Kojima M, Kumagai S, Iwasaki A, Suenaga K. Allelopathic Substances of Osmanthus spp. for Developing Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:376. [PMID: 36679091 PMCID: PMC9861473 DOI: 10.3390/plants12020376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Osmanthus fragrans Lour. has been cultivated for more than 2500 years because of the fragrance and color of the flowers. The flowers and roots have been used in tea, liquors, foods, and traditional Chinese medicine. The species contains more than 180 compounds including terpenoids, phenylpropanoids, polyphenols, flavonoids, and sterols. However, there has been limited information available on the allelopathic properties and allelopathic substances of O. fragrans. We investigated the allelopathy and allelopathic substances of O. fragrans and Osmanthus heterophyllus (G.Don) P.S. Green, as well as Osmanthus × fortunei Carrière, which is the hybrid species between O. fragrans and O. heterophyllus. The leaf extracts of O. fragrans, O. heterophyllus, and O. × fortunei suppressed the growth of cress (Lepidium sativum L.), alfalfa (Medicago sativa L.), Lolium multiflorum Lam., and Vulpia myuros (L.) C.C.Gmel with the extract concentration dependently. The extract of the hybrid species O. × fortune was the most active among the extracts. The main allelopathic substances of O. × fortunei and O. fragrans were isolated and identified as (+)-pinoresinol and 10-acetoxyligustroside, respectively. (+)-Pinoresinol was also found in the fallen leaves of O. × fortunei. Both compounds showed an allelopathic activity on the growth of cress and L. multiflorum. On the other hand, several allelopathic substances including (+)-pinoresinol may be involved in the allelopathy of O. heterophyllus. O. fragrans, O. heterophyllus, and O. × fortunei are evergreen trees. but their senescent leaves fall and cover the soil under the trees. It is possible that those allelopathic substances are liberated through the decomposition process of the leaves into their rhizosphere soil, and that they accumulate in the soil and provide a competitive advantage to the species through the inhibition of the growth of the neighboring competing plants. Therefore, the leaves of these Osmanthus species are allelopathic and potentially useful for weed management options in some agriculture settings to reduce commercial herbicide dependency for the developing sustainable agriculture systems.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Yuri Hamada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Misuzu Kojima
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Sanae Kumagai
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| |
Collapse
|