1
|
Vázquez-Cancino R, Rodríguez-Morales S, Jiménez-Pérez NDC, Peña-Morán OA, Cerón-Romero L, Sánchez-Lombardo I, Yair-Hidalgo A, Ceronio NR, Alvarado-Sánchez C, Hernández-Abreu O. Untargeted metabolic analysis using LC-Q-TOF-MS and toxicity assessment of Eryngium foetidum in zebrafish embryos. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2025; 75:133-146. [PMID: 40208784 DOI: 10.2478/acph-2025-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2025] [Indexed: 04/12/2025]
Abstract
Toxicological studies of edible plant species are important to determine the safety of their consumption. Eryngium foetidum is an edible plant used in some countries for seasoning food and as a natural remedy in folk medicine. Despite this species' gastronomic and medicinal properties, the chemical composition and toxicity have been unclear. The objective of our investigation was to determine the toxic potential of E. foetidum in the zebrafish embryo model and identify the potential compounds involved in its toxicity by electrospray ionization liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. Acute exposure of zebrafish embryos to n-hexane extract produced higher toxicity than the other extracts in a time- and concentration-dependent fashion (coagulated embryo). A 96-h median lethal concentration (LC 50) of 2.63 µg mL-1 (CI 95 % 0.58-28.5) was calculated by probit analysis. Caudal fin hypertrophy, head, yolk sac edema, caudal region, or somite malformations were observed. Secondary metabolites such as terpenes, polyphenols, and fatty acids were identified in the n-hexane extract. Also, pollutants such as diglycidyl resorcinol ether, diisopropyl adipate, and lauryl sulfate were found in the n-hexane extract. Our study revealed that chemical pollutants could be associated with the embryonic toxicity of the n-hexane extract of E. foetidum.
Collapse
Affiliation(s)
- Romario Vázquez-Cancino
- 1Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, 86690 Cunduacán, Tabasco, Mexico
| | - Sergio Rodríguez-Morales
- 2Unidad de Química-Sisal, Facultad de Química, Universidad Nacional Autónoma de México, 97356 Sisal Yucatán, Mexico
| | - Nelly Del Carmen Jiménez-Pérez
- 3Herbario UJAT, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, 86150, Villahermosa Tabasco, Mexico
| | - Omar Aristeo Peña-Morán
- 4División de Ciencias de la Salud, Universidad Autónoma del Estado de Quintana Roo, 77039 Chetumal, Quintana Roo, Mexico
| | - Litzia Cerón-Romero
- 4División de Ciencias de la Salud, Universidad Autónoma del Estado de Quintana Roo, 77039 Chetumal, Quintana Roo, Mexico
| | - Irma Sánchez-Lombardo
- 1Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, 86690 Cunduacán, Tabasco, Mexico
| | - Alam Yair-Hidalgo
- 1Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, 86690 Cunduacán, Tabasco, Mexico
| | - Nancy Romero Ceronio
- 1Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, 86690 Cunduacán, Tabasco, Mexico
| | - Cuauhtémoc Alvarado-Sánchez
- 1Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, 86690 Cunduacán, Tabasco, Mexico
| | - Oswaldo Hernández-Abreu
- 1Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, 86690 Cunduacán, Tabasco, Mexico
| |
Collapse
|
2
|
Arriagada-Escamilla C, Alvarado R, Ortiz J, Campos-Vargas R, Cornejo P. Alginate-Bentonite Encapsulation of Extremophillic Bacterial Consortia Enhances Chenopodium quinoa Tolerance to Metal Stress. Microorganisms 2024; 12:2066. [PMID: 39458375 PMCID: PMC11509983 DOI: 10.3390/microorganisms12102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study explores the encapsulation in alginate/bentonite beads of two metal(loid)-resistant bacterial consortia (consortium A: Pseudomonas sp. and Bacillus sp.; consortium B: Pseudomonas sp. and Bacillus sp.) from the Atacama Desert (northern Chile) and Antarctica, and their influence on physiological traits of Chenopodium quinoa growing in metal(loid)-contaminated soils. The metal(loid) sorption capacity of the consortia was determined. Bacteria were encapsulated using ionic gelation and were inoculated in soil of C. quinoa. The morphological variables, photosynthetic pigments, and lipid peroxidation in plants were evaluated. Consortium A showed a significantly higher biosorption capacity than consortium B, especially for As and Cu. The highest viability of consortia was achieved with matrices A1 (3% alginate and 2% bentonite) and A3 (3% alginate, 2% bentonite and 2.5% LB medium) at a drying temperature of 25 °C and storage at 4 °C. After 12 months, the highest viability was detected using matrix A1 with a concentration of 106 CFU g-1. Further, a greenhouse experiment using these consortia in C. quinoa plants showed that, 90 days after inoculation, the morphological traits of both consortia improved. Chemical analysis of metal(loid) contents in the leaves indicated that consortium B reduced the absorption of Cu to 32.1 mg kg-1 and that of Mn to 171.9 mg kg-1. Encapsulation resulted in a significant increase in bacterial survival. This highlights the benefits of using encapsulated microbial consortia from extreme environments, stimulating the growth of C. quinoa, especially in soils with metal(loid) levels that can be a serious constraint for plant growth.
Collapse
Affiliation(s)
- Cesar Arriagada-Escamilla
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
| | - Roxana Alvarado
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javier Ortiz
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Reinaldo Campos-Vargas
- Center for Postharvest Studies, Faculty of Agricultural Sciences, Universidad de Chile, Santiago 8820808, Chile;
| | - Pablo Cornejo
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, Pontificia Universidad Católica de Valparaíso, La Palma, Quillota 2260000, Chile;
| |
Collapse
|
3
|
Petřík I, Hladík P, Zhang C, Pěnčík A, Novák O. Spatio-temporal plant hormonomics: from tissue to subcellular resolution. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5295-5311. [PMID: 38938164 DOI: 10.1093/jxb/erae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Due to technological advances in mass spectrometry, significant progress has been achieved recently in plant hormone research. Nowadays, plant hormonomics is well established as a fully integrated scientific field focused on the analysis of phytohormones, mainly on their isolation, identification, and spatiotemporal quantification in plants. This review represents a comprehensive meta-study of the advances in the phytohormone analysis by mass spectrometry over the past decade. To address current trends and future perspectives, Web of Science data were systematically collected and key features such as mass spectrometry-based analyses were evaluated using multivariate data analysis methods. Our findings showed that plant hormonomics is currently divided into targeted and untargeted approaches. Both aim to miniaturize the sample, allowing high-resolution quantification to be covered in plant organs as well as subcellular compartments. Therefore, we can study plant hormone biosynthesis, metabolism, and signalling at a spatio-temporal resolution. Moreover, this trend has recently been accelerated by technological advances such as fluorescence-activated cell sorting or mass spectrometry imaging.
Collapse
Affiliation(s)
- Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Pavel Hladík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Chao Zhang
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
4
|
Rašeta M, Kebert M, Mišković J, Kostić S, Kaišarević S, Stilinović N, Vukmirović S, Karaman M. Ganoderma pfeifferi Bres. and Ganoderma resinaceum Boud. as Potential Therapeutic Agents: A Comparative Study on Antiproliferative and Lipid-Lowering Properties. J Fungi (Basel) 2024; 10:501. [PMID: 39057386 PMCID: PMC11277669 DOI: 10.3390/jof10070501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Medicinal mushrooms, especially Ganoderma species, hold immense promise for the production of a wide range of bioactive compounds with various effects. The biochemical potential of indigenous fungal strains, specific to a region, could play a critical role in the continuous search for novel strains with superior activities on a global scale. This research focused on the ethanolic (EtOH) and hot-water (H2O) extracts of fruiting bodies of two wild-growing Ganoderma species: G. pfeifferi and G. resinaceum, with the aim of assessing their nutritional (total carbohydrate content-TCC) and mineral composition in relation to bioactive properties: antioxidant, antiproliferative and lipid-lowering. Atomic absorption spectrophotometry (AAS) revealed that G. pfeifferi is a promising source of minerals that are essential for numerous physiological functions in the human body like bone health and muscle and nerve function, with Ca (4.55 ± 0.41 mg/g d.w.) and Mg (1.33 ± 0.09 mg/g d.w.) being the most abundant macroelement present. Zn, Mn, and Cr were particularly notable, with concentrations ranging from 21.49 to 41.70 mg/kg d.w. The EtOH extract of G. pfeifferi demonstrated significantly elevated levels of TCC, essential macromolecules for energy and structural functions in the body, with higher quantities of all three standard carbohydrates detected in this type of extract. Similar to the revealed composition, the same species, G. pfeifferi, stood out as the most prominent antioxidant agent, with the H2O extract being stronger than EtOH in the ABTS assay (86.85 ± 0.67 mg TE/g d.w.), while the EtOH extract displayed the highest anti-OH• scavenging ability (IC50 = 0.18 ± 0.05 μg/mL) as well as the most notable reducing potential among all. The highest antiproliferative effect against the breast cancer cell line (MCF-7), were demonstrated by the H2O extracts from G. resinaceum with the most pronounced activity after 24 h (IC50 = 4.88 ± 0.50 μg/mL), which surpasses that of the standard compound, ellagic acid (IC50 = 33.94 ± 3.69 μg/mL). Administration of both Ganoderma extracts mitigated diabetic lipid disturbances and exhibited potential renal and hepatic protection in vivo on white Wistar rats by the preservation of kidney function parameters in G. resinaceum H2O pre-treatment (urea: 6.27 ± 0.64 mmol/L, creatinine: 50.00 ± 6.45 mmol/L) and the reduction in ALT levels (17.83 ± 3.25 U/L) compared to diabetic control groups treated with saline (urea: 46.98 ± 6.01 mmol/L, creatinine: 289.25 ± 73.87 mmol/L, and ALT: 60.17 ± 9.64 U/L). These results suggest that pre-treatment with G. resinaceum H2O extracts may have potential antidiabetic properties. In summary, detected microelements are vital for maintaining overall health, supporting metabolic processes, and protecting against various chronic diseases. Further research and dietary assessments could help determine the full potential and applications of the two underexplored Ganoderma species native to Serbia in nutrition and health supplements.
Collapse
Affiliation(s)
- Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.M.); (M.K.)
| | - Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia; (M.K.); (S.K.)
| | - Jovana Mišković
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.M.); (M.K.)
| | - Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia; (M.K.); (S.K.)
| | - Sonja Kaišarević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia;
| | - Nebojša Stilinović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.S.); (S.V.)
| | - Saša Vukmirović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.S.); (S.V.)
| | - Maja Karaman
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.M.); (M.K.)
| |
Collapse
|
5
|
Kostić S, Kebert M, Teslić N, Stojanović DB, Zorić M, Kovačević B, Orlović S. Polycyclic aromatic hydrocarbon (PAH) phytoaccumulation in urban areas by Platanus × acerifolia, Celtis australis, and Tilia grandifolia leaves and branches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31273-31286. [PMID: 38632198 DOI: 10.1007/s11356-024-33280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Polycyclic aromatic hydrocarbon (PAH) concentrations in the leaves and 1-year-old branches of three common tree species growing in a middle-sized city located in a moderate climate zone were estimated. For this purpose, PAH phytoaccumulation in Platanus × acerifolia, Celtis australis, and Tilia grandifolia species from highly urbanized, traffic congested, and highly PAH-contaminated streets was compared with trees from non-contaminated parks in the same urban core. The gathered data was used to define 17 PAH profiles, identify the main PAH pollution emission sources, and determine the organ and species specificity of PAHs accumulation. Due to the direct absorption of polluted air via stomata, the leaves accumulated up to 30% more PAHs compared to the 1-year-old branches. As expected, PAH concentrations were much higher in street trees, while heavy weight PAHs (with five and six rings) were accumulated in the highest concentrations. The highest foliar Σ17 PAH concentrations were detected in street-grown C. australis, followed by P. acerifolia and T. grandifolia (502.68, 488.45, and 339.47 ng g-1 dry weight (DW), respectively). The same pattern was noted for Σ17 PAHs in branches (414.89, 327.58, and 342.99 ng g-1 DW, respectively). Thus, T. grandifolia emerged as the least effective PAH sink as it accumulated up to ~ 40% less PAHs than P. acerifolia and C. australis leaves/branches. Among the 17 tracked PAHs, benzo[a]anthracene, benzo[a]pyrene, dibenzo[a,h]anthracene, and pyrene were found to have accumulated in the highest concentrations in all analyzed species irrespective of the site, and accounted for more than 50% of the total detected PAHs. Finally, a "black box" about species and organ specificity, as well as specific drivers that limit PAHs uptake capacity by trees, was opened, while this work provides insights into further PAH phytoremediation strategies.
Collapse
Affiliation(s)
- Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000, Novi Sad, Serbia.
| | - Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000, Novi Sad, Serbia
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Dejan B Stojanović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000, Novi Sad, Serbia
| | - Martina Zorić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000, Novi Sad, Serbia
| | - Branislav Kovačević
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000, Novi Sad, Serbia
| | - Saša Orlović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000, Novi Sad, Serbia
| |
Collapse
|
6
|
Kebert M, Stojnić S, Rašeta M, Kostić S, Vuksanović V, Ivanković M, Lanšćak M, Markić AG. Variations in Proline Content, Polyamine Profiles, and Antioxidant Capacities among Different Provenances of European Beech ( Fagus sylvatica L.). Antioxidants (Basel) 2024; 13:227. [PMID: 38397825 PMCID: PMC10886255 DOI: 10.3390/antiox13020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
International provenance trials are a hot topic in forestry, and in light of climate change, the search for more resilient beech provenances and their assisted migration is one of the challenges of climate-smart forestry. The main aim of the study was to determine intraspecific variability in European beech (Fagus sylvatica L.) among 11 beech provenances according to total antioxidant capacities estimated by various assays, such as DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid), FRAP (ferric reducing antioxidant power) assay, and radical scavenging capacity against nitric oxide (RSC-NO assays), as well as osmolyte content, primarily individual polyamines (putrescine, spermidine, and spermine), and free proline content. Polyamine amounts were quantified by using HPLC coupled with fluorescent detection after dansylation pretreatment. The highest values for radical scavenger capacity assays (ABTS, DPPH, and FRAP) were measured in the German provenances DE47 and DE49. Also, the highest NO inhibition capacity was found in the provenance DE49, while the highest content of proline (PRO), total phenolic content (TPC), and total flavonoid content (TFC) was recorded in DE47. The Austrian AT56 and German provenance DE49 were most abundant in total polyamines. This research underlines the importance of the application of common antioxidant assays as well as osmolyte quantification as a criterion for the selection of climate-ready beech provenances for sustainable forest management.
Collapse
Affiliation(s)
- Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, 21000 Novi Sad, Serbia; (S.S.); (S.K.)
| | - Srđan Stojnić
- Institute of Lowland Forestry and Environment, University of Novi Sad, 21000 Novi Sad, Serbia; (S.S.); (S.K.)
| | - Milena Rašeta
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, 21000 Novi Sad, Serbia; (S.S.); (S.K.)
| | - Vanja Vuksanović
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Mladen Ivanković
- Division for Genetics, Forest Tree Breeding and Seed Science, Croatian Forest Research Institute, 10450 Jastrebarsko, Croatia; (M.I.); (M.L.)
| | - Miran Lanšćak
- Division for Genetics, Forest Tree Breeding and Seed Science, Croatian Forest Research Institute, 10450 Jastrebarsko, Croatia; (M.I.); (M.L.)
| | | |
Collapse
|
7
|
Vuksanović V, Kovačević B, Kebert M, Pavlović L, Kesić L, Čukanović J, Orlović S. In vitro selection of drought-tolerant white poplar clones based on antioxidant activities and osmoprotectant content. FRONTIERS IN PLANT SCIENCE 2023; 14:1280794. [PMID: 38046609 PMCID: PMC10690421 DOI: 10.3389/fpls.2023.1280794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
Introduction In light of upcoming climate change, there is an urgent requirement for tree improvement regarding adaptability to drought-caused stress and the development of quick and reliable screening methodologies for genotypes' drought tolerance. White poplar is, despite its high adaptability, considered to be an endangered tree species in Serbia, which gives it special importance in the preservation and improvement of biodiversity of riparian ecosystems. The main goal of this research was to evaluate the tolerance of five white poplar clones to the presence of polyethylene glycol (PEG 6000 molecular weight 6000) (different concentrations (e.g. 0 g/L, 1 g/L, 10 g/L, 20 g/L, and 50 g/L) in Aspen Culture Medium (ACM). Methods The tolerance of the clones was evaluated by using morphological parameters (shoot fresh and dry weight, root fresh and dry weight), photosynthetic pigments (contents of chlorophyll a, chlorophyll b, carotenoids, and chlorophyll a+b), and biochemical parameters (total phenolic content, total flavonoid content, ferric reducing antioxidant power, antioxidant activities (DPPH activity and ABTS assay), free proline content and glycine betaine content. Results and Discussion The values of morphological and photosynthetic pigments declined with an increase in the concentration of PEG 6000. At a concentration of 50 g/L, the content of shoot fresh mass decreased by 41%, the content of Chl a by 68%, Chl b by 65%, and Car by 76% compared to the control. Also, at the same medium, there was an increase in the content of total phenols, accumulation of proline, the content of glycine betaine as well as in antioxidant activity. Based on the obtained results, it can be assumed that more drought-tolerant clones are characterized by high values for biomass, high content of photosynthetic pigments, and high content of proline and glycine betaine in conditions similar to drought in vitro. Clone L-80 showed better results in most of the tested parameters, especially compared to the reference clone Villafranca.
Collapse
Affiliation(s)
- Vanja Vuksanović
- Department of Fruit Growing, Viticulture, Horticulture and Landscape Architecture, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Branislav Kovačević
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Lazar Pavlović
- Department of Fruit Growing, Viticulture, Horticulture and Landscape Architecture, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Lazar Kesić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Čukanović
- Department of Fruit Growing, Viticulture, Horticulture and Landscape Architecture, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Saša Orlović
- Department of Fruit Growing, Viticulture, Horticulture and Landscape Architecture, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
8
|
Peng W, He Y, He S, Luo J, Zeng Y, Zhang X, Huo Y, Jie Y, Xing H. Exogenous plant growth regulator and foliar fertilizers for phytoextraction of cadmium with Boehmeria nivea [L.] Gaudich from contaminated field soil. Sci Rep 2023; 13:11019. [PMID: 37419889 PMCID: PMC10329045 DOI: 10.1038/s41598-023-37971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
As a enrichment plant, ramie can be used for the phytoremediation of cadmium (Cd)-contaminated soil. However, it is worth exploring the role of plant growth regulators and foliar fertilizers in the process of plant growth and development and Cd adsorption. By measuring the agronomic traits, Cd content of aboveground and underground ramie, calculating the Cd transfer coefficient (TF) and Cd bioconcentration factors (BCF), and the correlation between various indicators. This study examined the effects of plant growth regulators and foliar fertilizers on ramie's capacity for Cd accumulation and transportation. Plant growth regulators and foliar fertilizers increased the Cd content of the aboveground ramie, reduced the Cd content of the underground ramie, and increased the TF. Among them, GA-1 increased the Cd content of the aboveground ramie to 3 times more than that of the control and reduced the Cd content of the underground ramie by 54.76%. Salicylic acid (SA) increased the Cd content of the aboveground ramie to three times more than that of the control. The combination of GA and foliar fertilizer reduced the Cd content of the aboveground and underground ramie and the TF and BCF of the underground ramie. After the hormones were sprayed, the TF of ramie had a significant positive correlation with the Cd content of the aboveground ramie; the BCF of the aboveground ramie had a significant positive correlation with the Cd content and TF of the aboveground ramie. The results indicate that Brassinolide (BR), gibberellin (GA), ethephon (ETH), polyamines (PAs), and salicylic acid (SA) have different effects on the enrichment and transport of Cd in ramie. This study provided an effective method to improve the capacity for ramie to adsorb heavy metals during cultivation.
Collapse
Affiliation(s)
- Wenxian Peng
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yejun He
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Si He
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Jinfeng Luo
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yi Zeng
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Xiaoyang Zhang
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yingyi Huo
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yucheng Jie
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Hucheng Xing
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China.
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China.
| |
Collapse
|
9
|
Potočić N. Advances in Forest Ecophysiology: Stress Response and Ecophysiological Indicators of Tree Vitality. PLANTS (BASEL, SWITZERLAND) 2023; 12:1063. [PMID: 36903920 PMCID: PMC10005759 DOI: 10.3390/plants12051063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Back in the beginning of the year 2021, when the work on this Special Issue started, it was quite clear that the topics of tree stress response and the ecophysiological indicators of tree vitality were both current and important, but the attitude of the scientific community towards the idea of a Special Issue on the subject was yet to be determined [...].
Collapse
Affiliation(s)
- Nenad Potočić
- Croatian Forest Research Institute, Division of Forest Ecology, Cvjetno naselje 41, 10450 Jastrebarsko, Croatia
| |
Collapse
|