1
|
Zhang G, Jiang W, Hu Q, Luo J, Peng X. Characterization and Anti-Aging Potency of Phenolic Compounds in Xianhu Tea Extracts. Foods 2025; 14:737. [PMID: 40077440 PMCID: PMC11899101 DOI: 10.3390/foods14050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
The health benefits of tea are primarily attributed to its chemical composition, particularly phenolic compounds. As a renowned tea from Guangdong, China, Xianhu tea (XHT) has not been thoroughly studied in terms of its phenolic composition or health-promoting properties. This study characterized the phenolic compounds in Xianhu tea water extract (XHT) using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and evaluated its antioxidant activity in vitro. Furthermore, the effects of XHT extracts on reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), lipofuscin levels, and lifespan in Caenorhabditis elegans were assessed, alongside their modulation of aging-related genes. Compared with Xinyang Maojian tea water extract (XYMJ) and Yingde black tea water extract (YDBT), XHT exhibited a significantly higher polyphenol content, with 23 phenolic compounds identified as characteristic markers. XHT demonstrated superior 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) inhibition capacities, the greatest reductions in ROS, MDA, and lipofuscin levels, and the highest upregulation of SOD and CAT activities. The lifespan was 23.50% and 21.07% significantly longer than nematodes in the control group. Moreover, XHT modulated 13 aging-related genes, which strongly correlated with the 23 identified phenolic compounds. The research results of the above indicators were all obtained without affecting the normal feeding and reproductive capabilities of C. elegans. These findings suggest that these phenolics are the key bioactive components responsible for the anti-aging effects of XHT.
Collapse
Affiliation(s)
| | | | | | | | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (G.Z.); (W.J.); (Q.H.); (J.L.)
| |
Collapse
|
2
|
Zou J, Shi L, Cheng W, Wang Y, Liao Y, Gu J, Wang T, Zhang Q, Ye J, Wang H, Jia X. Ion Interference Reduces the Uptake and Accumulation of Magnesium Ions in Tea Plants ( Camellia sinensis). PLANTS (BASEL, SWITZERLAND) 2025; 14:643. [PMID: 40094544 PMCID: PMC11901675 DOI: 10.3390/plants14050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Magnesium (Mg) ions play a crucial role in the growth and development of tea plants (Camellia sinensis). In this study, the ion kinetic method was used to analyze the effect of ions from various elements on the Mg ion uptake rate in two tea plant varieties (Rougui and Shuixian). Additionally, Mg ion content and the expression intensity of CsMGT5 gene in the tea plant's root system were measured to further understand how different elemental ions affect Mg ion uptake and accumulation. The results revealed that while the trends in the effects of different elements on Mg ion uptake were similar in both Rougui and Shuixian roots, the magnitude of these effects was lower in Rougui and higher in Shuixian. In the presence of only Mg ions in the solution, the tea plant's root system exhibited the highest intensity of CsMGT5 gene expression, the fastest uptake rate of Mg ion, and the highest Mg content. Conversely, the presence of nitrogen, phosphorus, and potassium ions alone reduced CsMGT5 gene expression, Mg ion uptake rate, and Mg content in the tea plant's root system. However, differences in the impact of these three elements on Mg ion uptake and accumulation were not statistically significant. In addition, with the increase in the types of added ions, the Mg ion uptake rate by tea plants gradually declined, indicating a decreasing demand, with Mg accumulation showing a downward trend. Statistical analysis of correlations showed that CsMGT5 gene expression in the tea plant's root system positively regulated the maximum uptake rate of Mg ion (Imax value, 0.94 **). The Imax value negatively regulated Mg ion content in solution (Cmin value, -0.94 **), and the Cmin value negatively regulated Mg ion content in the tea plant's root system (-0.95 **). In conclusion, the presence of different elemental ions significantly influenced the uptake and accumulation of Mg ions in tea plants, with the magnitude of this effect intensifying as the number of elemental types increased. A positive correlation was observed between the capacity for Mg ion uptake and accumulation capacity in the tea plant's root system and the expression intensity of the CsMGT5 gene within the root system. This study offers valuable insights and serves as an important reference for leveraging Mg to regulate tea plant growth in practical agricultural applications.
Collapse
Affiliation(s)
- Jishuang Zou
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Lihe Shi
- College of Life Science, Longyan University, Longyan 364012, China
| | - Weiting Cheng
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yulin Wang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yankun Liao
- College of Life Science, Longyan University, Longyan 364012, China
| | - Junbin Gu
- College of Life Science, Longyan University, Longyan 364012, China
| | - Tingting Wang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Haibin Wang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| |
Collapse
|
3
|
Chen Y, Li X, Zhou D, Wei Y, Feng J, Cai B, Qi D, Zhang M, Zhao Y, Li K, Pan Z, Wang W, Xie J. Streptomyces-Secreted Fluvirucin B6 as a Potential Bio-Fungicide for Managing Banana Fusarium Wilt and Mycotoxins and Modulating the Soil Microbial Community Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17890-17902. [PMID: 39083645 DOI: 10.1021/acs.jafc.4c04077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc TR4) is the most destructive soil-borne fungal disease. Until now, there has been a lack of effective measures to control the disease. It is urgent to explore biocontrol agents to control Foc TR4 and the secretion of mycotoxin. In this study, fluvirucin B6 was screened from Streptomyces solisilvae using an activity-guided method. Fluvirucin B6 exhibited strong antifungal activity against Foc TR4 (0.084 mM of EC50 value) and significantly inhibited mycelial growth and spore germination. Further studies demonstrated that fluvirucin B6 could cause the functional loss of mitochondria, the disorder of metabolism of Foc TR4 cells, and the decrease of enzyme activities in the tricarboxylic acid cycle and electron transport chain, ultimately inhibiting mycotoxin metabolism. In a pot experiment, the application of fluvirucin B6 significantly decreased the incidence of banana Fusarium wilt and the amount of Foc TR4 and controlled fungal toxins in the soil. Additionally, fluvirucin B6 could positively regulate the changes in the structure of the banana rhizosphere microbial community, significantly enriching beneficial microbes associated with disease resistance. In summary, this study identifies fluvirucin B6, which plays versatile roles in managing fungal diseases and mycotoxins.
Collapse
Affiliation(s)
- Yufeng Chen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - XiaoJuan Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengbo Zhou
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongzan Wei
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Junting Feng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bingyu Cai
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengfeng Qi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Miaoyi Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yankun Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kai Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhiqiang Pan
- Agricultural Research Service, Natural Products Utilization Research Unit, U.S. Department of Agriculture, University of Mississippi, University, Mississippi 38677, United States
| | - Wei Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianghui Xie
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
4
|
Cai J, Qiu Z, Liao J, Li A, Chen J, Wu Z, Khan W, Sun B, Liu S, Zheng P. Comprehensive Analysis of the Yield and Leaf Quality of Fresh Tea ( Camellia sinensis cv. Jin Xuan) under Different Nitrogen Fertilization Levels. Foods 2024; 13:2091. [PMID: 38998596 PMCID: PMC11241149 DOI: 10.3390/foods13132091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Reasonable application of nitrogen fertilizer can improve the yield and quality of tea. This study used Jin Xuan as the tested variety and applied nitrogen fertilizer at rates of 0 kg/ha (N0), 150 kg/ha (N150), 300 kg/ha (N300), and 450 kg/ha (N450) in the summer and autumn seasons to analyze the effects of nitrogen application on the quality components and gene expression of tea leaves. The results showed that the N150 treatment significantly increased total polyphenols (TP), total catechins (TC), and caffeine contents, with the most significant increase observed in the content of six monomers of catechins (EGCG, ECG, EGC, GCG, GC, and EC) in the summer. The N300 treatment significantly increased TP and AA contents in the autumn while decreasing TC content. Additionally, the N300 treatment significantly increased caffeine and theanine contents in the autumn. Notably, the N300 treatment significantly increased both summer and autumn tea yields. Multivariate statistical analysis showed that TPs, AAs, TCs, EGC, and caffeine were key factors affecting the quality of Jin Xuan. Furthermore, the N150 treatment upregulated the expression of the phenylalanine ammonia-lyase (PAL) gene, which may increase the accumulation of catechins. In conclusion, it is recommended to apply 150 kg/ha of nitrogen fertilizer in the summer and 300 kg/ha of nitrogen fertilizer in the autumn. This recommendation provides a theoretical basis for improving the quality and yield of tea leaves in summer and autumn.
Collapse
Affiliation(s)
- Jiajun Cai
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Z.Q.); (A.L.); (J.C.); (Z.W.); (W.K.); (B.S.); (S.L.)
| | - Zihao Qiu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Z.Q.); (A.L.); (J.C.); (Z.W.); (W.K.); (B.S.); (S.L.)
| | - Jinmei Liao
- Soil and Fertilizer Station of Cenxi City, Wuzhou 543200, China;
| | - Ansheng Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Z.Q.); (A.L.); (J.C.); (Z.W.); (W.K.); (B.S.); (S.L.)
| | - Jiahao Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Z.Q.); (A.L.); (J.C.); (Z.W.); (W.K.); (B.S.); (S.L.)
| | - Zehui Wu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Z.Q.); (A.L.); (J.C.); (Z.W.); (W.K.); (B.S.); (S.L.)
| | - Waqar Khan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Z.Q.); (A.L.); (J.C.); (Z.W.); (W.K.); (B.S.); (S.L.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Z.Q.); (A.L.); (J.C.); (Z.W.); (W.K.); (B.S.); (S.L.)
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Z.Q.); (A.L.); (J.C.); (Z.W.); (W.K.); (B.S.); (S.L.)
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Z.Q.); (A.L.); (J.C.); (Z.W.); (W.K.); (B.S.); (S.L.)
| |
Collapse
|
5
|
Guo Z, Li C, Li X, Shao S, Rogers KM, Li Q, Li D, Guo H, Huang T, Yuan Y. Fertilizer Effects on the Nitrogen Isotope Composition of Soil and Different Leaf Locations of Potted Camellia sinensis over a Growing Season. PLANTS (BASEL, SWITZERLAND) 2024; 13:1628. [PMID: 38931060 PMCID: PMC11207308 DOI: 10.3390/plants13121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The nitrogen-stable isotopes of plants can be used to verify the source of fertilizers, but the fertilizer uptake patterns in tea (Camellia sinensis) plants are unclear. In this study, potted tea plants were treated with three types of organic fertilizers (OFs), urea, and a control. The tea leaves were sampled over seven months from the top, middle, and base of the plants and analyzed for the δ15N and nitrogen content, along with the corresponding soil samples. The top tea leaves treated with the rapeseed cake OF had the highest δ15N values (up to 6.6‱), followed by the chicken manure, the cow manure, the control, and the urea fertilizer (6.5‱, 4.1‱, 2.2‱, and 0.6‱, respectively). The soil treated with cow manure had the highest δ15N values (6.0‱), followed by the chicken manure, rapeseed cake, control, and urea fertilizer (4.8‱, 4.0‱, 2.5‱, and 1.9‱, respectively). The tea leaves fertilized with rapeseed cake showed only slight δ15N value changes in autumn but increased significantly in early spring and then decreased in late spring, consistent with the delivery of a slow-release fertilizer. Meanwhile, the δ15N values of the top, middle, and basal leaves from the tea plants treated with the rapeseed cake treatment were consistently higher in early spring and lower in autumn and late spring, respectively. The urea and control samples had lower tea leaf δ15N values than the rapeseed cake-treated tea and showed a generalized decrease in the tea leaf δ15N values over time. The results clarify the temporal nitrogen patterns and isotope compositions of tea leaves treated with different fertilizer types and ensure that the δ15N tea leaf values can be used to authenticate the organic fertilizer methods across different harvest periods and leaf locations. The present results based on a pot experiment require further exploration in open agricultural soils in terms of the various potential fertilizer effects on the different variations of nitrogen isotope ratios in tea plants.
Collapse
Affiliation(s)
- Zuchuang Guo
- College of Food Sciences and Engineering, Ningbo University, Ningbo 315211, China;
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Chunlin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
| | - Shengzhi Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Karyne M. Rogers
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
- National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Qingsheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.L.)
| | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.L.)
| | - Haowei Guo
- Tea Research Institute, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tao Huang
- College of Food Sciences and Engineering, Ningbo University, Ningbo 315211, China;
| | - Yuwei Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| |
Collapse
|
6
|
Lei Y, Ding D, Duan J, Luo Y, Huang F, Kang Y, Chen Y, Li S. Soil Microbial Community Characteristics and Their Effect on Tea Quality under Different Fertilization Treatments in Two Tea Plantations. Genes (Basel) 2024; 15:610. [PMID: 38790239 PMCID: PMC11121415 DOI: 10.3390/genes15050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Fertilization is an essential aspect of tea plantation management that supports a sustainable tea production and drastically influences soil microbial communities. However, few research studies have focused on the differences of microbial communities and the variation in tea quality in response to different fertilization treatments. In this work, the soil fertility, tea quality, and soil microbial communities were investigated in two domestic tea plantations following the application of chemical and organic fertilizers. We determined the content of mineral elements in the soil, including nitrogen, phosphorus, and potassium, and found that the supplementation of chemical fertilizer directly increased the content of mineral elements. However, the application of organic fertilizer significantly improved the accumulation of tea polyphenols and reduced the content of caffeine. Furthermore, amplicon sequencing results showed that the different ways of applying fertilizer have limited effect on the alpha diversity of the microbial community in the soil while the beta diversity was remarkably influenced. This work also suggests that the bacterial community structure and abundance were also relatively constant while the fungal community structure and abundance were dramatically influenced; for example, Chaetomiaceae at the family level, Hypocreaceae at the order level, Trichoderma at the genus level, and Fusarium oxysporum at the species level were predominantly enriched in the tea plantation applying organic fertilizer. Moreover, the bacterial and fungal biomarkers were also analyzed and it was found that Proteobacteria and Gammaproteobacteria (bacteria) and Tremellomycetes (fungi) were potentially characterized as biomarkers in the plantation under organic fertilization. These results provide a valuable basis for the application of organic fertilizer to improve the soil of tea plantations in the future.
Collapse
Affiliation(s)
- Yu Lei
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Ding Ding
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Jihua Duan
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Yi Luo
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Feiyi Huang
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Yankai Kang
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Yingyu Chen
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Saijun Li
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| |
Collapse
|
7
|
Jia X, Zhang Q, Wang Y, Zhang Y, Li M, Cheng P, Chen M, Lin S, Zou J, Ye J, Wang H. Changes of physiological characteristics, element accumulation and hormone metabolism of tea leaves in response to soil pH. FRONTIERS IN PLANT SCIENCE 2023; 14:1266026. [PMID: 38034585 PMCID: PMC10687463 DOI: 10.3389/fpls.2023.1266026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Soil acidification is very likely to affect the growth of tea trees and reduce tea yield. In this study, we analyzed the effects of soils with different pH on the physiological characteristics of tea leaves and determined the multi-element content and hormone metabolomes of tea leaves by ICP-MS and LC-MS/MS, based on which we further analyzed their interaction. The results showed that increasing soil pH (3.29~5.32) was beneficial to increase the available nutrient content of the rhizosphere soil of tea tree, improve the antioxidant enzyme activity and photosynthesis capacity of tea tree leaves, and promote the growth of tea tree. Orthogonal partial least squares discriminant analysis (OPLS-DA) and bubble characteristics analysis were used to screen key elements and hormones for the effect of pH on tea leaves, which were further analyzed by redundancy analysis (RDA) and interaction network. The results showed that an increase in soil pH (3.29~5.32) favored the accumulation of seven key elements (C, K, Ca, Mg, Mn, P, S) in tea tree leaves, which in turn promoted the synthesis of six key hormones (salicylic acid, salicylic acid 2-O-β-glucoside, tryptamine, 2-oxindole-3-acetic acid, indole-3-acetic acid, trans-zeatin-O-glucoside). It can be seen that the increase in soil pH (3.29~5.32) enhanced the resistance of the tea tree itself, improved the photosynthesis ability of the tea tree, and effectively promoted the growth of the tea tree.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Jishuang Zou
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
8
|
Zhang Q, Zhang Y, Wang Y, Zou J, Lin S, Chen M, Miao P, Jia X, Cheng P, Pang X, Ye J, Wang H. Transcriptomic Analysis of the Effect of Pruning on Growth, Quality, and Yield of Wuyi Rock Tea. PLANTS (BASEL, SWITZERLAND) 2023; 12:3625. [PMID: 37896087 PMCID: PMC10610282 DOI: 10.3390/plants12203625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/14/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Pruning is an important agronomic measure in tea plantation management. In this study, we analyzed the effect of pruning on gene expression in tea leaves from a transcriptomics perspective and verified the results of a transcriptomic analysis in terms of changes in physiological indicators of tea leaves. The results showed that pruning enhanced the gene expression of nine metabolic pathways in tea leaves, including fatty acid synthesis and carbohydrate metabolism, nitrogen metabolism, protein processing in the endoplasmic reticulum, and plant hormone signal transduction, thereby promoting the growth of tea plants and increasing tea yield. However, pruning reduced the gene expression of nine metabolic pathways, including secondary metabolites biosynthesis, flavonoid biosynthesis, phenylpropanoid biosynthesis, and sesquiterpenoid and triterpenoid biosynthesis, and lowered the content of caffeine, flavonoids, and free amino acids in tea plant leaves. In conclusion, pruning could promote the growth of tea plants and increase the yield of tea, but it was not conducive to the accumulation of some quality indicators in tea leaves, especially caffeine, flavonoids, and free amino acids, which, in turn, reduced the quality of tea. This study provides an important theoretical reference for the management of agronomic measures in tea plantations.
Collapse
Affiliation(s)
- Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (Q.Z.)
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (Q.Z.)
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China (J.Z.)
| | - Jishuang Zou
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China (J.Z.)
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan 364012, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (Q.Z.)
| | - Pengyao Miao
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (Q.Z.)
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (Q.Z.)
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan 364012, China
| | - Xiaomin Pang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (Q.Z.)
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (Q.Z.)
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (Q.Z.)
| |
Collapse
|
9
|
Zhang Q, Zhang Y, Wang Y, Lin S, Chen M, Cheng P, Ye J, Miao P, Jia X, Wang H. Effects of pruning on tea tree growth, tea quality, and rhizosphere soil microbial community. Microbiol Spectr 2023; 11:e0160123. [PMID: 37750694 PMCID: PMC10655597 DOI: 10.1128/spectrum.01601-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/05/2023] [Indexed: 09/27/2023] Open
Abstract
Pruning is an important agronomic measure in tea plantation management. This study analyzed the effects of pruning on tea tree growth, tea quality, rhizosphere soil physicochemical indexes, microbial communities, and metabolic pathways. The results showed that pruning was beneficial for promoting tea tree growth and increasing tea yield, but not for the synthesis and accumulation of quality-related compounds in tea leaves. After pruning, organic matter, available phosphorus content and catalase, acid phosphatase, and sucrase activities in rhizosphere soil were significantly higher than those in unpruned tea trees, while total phosphorus, total potassium, and available nitrogen content were significantly lower than those in unpruned tea trees. The results of microbial community analysis of tea rhizosphere soil showed that the key changed characteristic microorganisms after pruning were Haliangium, Acidicaldus, Reyranella, Acidobacterium, Aquicella, and Granulicella, and the key changed characteristic microbial metabolic pathways were ko00072, ko00473, ko00750, ko01055, ko00521, and ko02040. Furthermore, the results found that pruning promoted Haliangium, Acidicaldus, and Reyranella abundances, ko00072, ko00473, and ko00750, respectively, microbial metabolic pathways in tea trees rhizosphere soil, and reduced Acidobacterium, Granulicella, and Aquicella abundance, ko01055, ko00521, and ko02040, respectively, microbial metabolic pathways, thereby increasing the activities of soil catalase, acid phosphatase, and sucrase, improving soil organic matter decomposition efficiency and available phosphorus content, and promoting tea yield, but not synthesis and accumulation of quality-related compounds in tea leaves. This study provides an important theoretical reference for the management of agronomic measures in tea plantations. IMPORTANCE Pruning is an important agronomic measure in tea cultivation and management. We found that pruning was beneficial to increase tea yield, but it would reduce tea quality, especially the content of polyphenols, theanine, flavonoids, and free amino acids in tea leaves was reduced. The reason for this phenomenon was that pruning promotes the enrichment of special functional microorganisms and the enhancement of special metabolic pathways in the soil, leading to changes in the nutrient cycle in the soil.
Collapse
Affiliation(s)
- Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Pengyao Miao
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
10
|
Samarina L, Fedorina J, Kuzmina D, Malyukova L, Manakhova K, Kovalenko T, Matskiv A, Xia E, Tong W, Zhang Z, Ryndin A, Orlov YL, Khlestkina EK. Analysis of Functional Single-Nucleotide Polymorphisms (SNPs) and Leaf Quality in Tea Collection under Nitrogen-Deficient Conditions. Int J Mol Sci 2023; 24:14538. [PMID: 37833988 PMCID: PMC10572165 DOI: 10.3390/ijms241914538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
This study discusses the genetic mutations that have a significant association with economically important traits that would benefit tea breeders. The purpose of this study was to analyze the leaf quality and SNPs in quality-related genes in the tea plant collection of 20 mutant genotypes growing without nitrogen fertilizers. Leaf N-content, catechins, L-theanine, and caffeine contents were analyzed in dry leaves via HPLC. Additionally, the photochemical yield, electron transport efficiency, and non-photochemical quenching were analyzed using PAM-fluorimetry. The next generation pooled amplicon-sequencing approach was used for SNPs-calling in 30 key genes related to N metabolism and leaf quality. The leaf N content varied significantly among genotypes (p ≤ 0.05) from 2.3 to 3.7% of dry mass. The caffeine content varied from 0.7 to 11.7 mg g-1, and the L-theanine content varied from 0.2 to 5.8 mg g-1 dry leaf mass. Significant positive correlations were detected between the nitrogen content and biochemical parameters such as theanine, caffeine, and most of the catechins. However, significant negative correlations were observed between the photosynthetic parameters (Y, ETR, Fv/Fm) and several biochemical compounds, including rutin, Quercetin-3-O-glucoside, Kaempferol-3-O-rutinoside, Kaempferol-3-O-glucoside, Theaflavin-3'-gallate, gallic acid. From our SNP-analysis, three SNPs in WRKY57 were detected in all genotypes with a low N content. Moreover, 29 SNPs with a high or moderate effect were specific for #316 (high N-content, high quality) or #507 (low N-content, low quality). The use of a linear regression model revealed 16 significant associations; theaflavin, L-theanine, and ECG were associated with several SNPs of the following genes: ANSa, DFRa, GDH2, 4CL, AlaAT1, MYB4, LHT1, F3'5'Hb, UFGTa. Among them, seven SNPs of moderate effect led to changes in the amino acid contents in the final proteins of the following genes: ANSa, GDH2, 4Cl, F3'5'Hb, UFGTa. These results will be useful for further evaluations of the important SNPs and will help to provide a better understanding of the mechanisms of nitrogen uptake efficiency in tree crops.
Collapse
Affiliation(s)
- Lidiia Samarina
- Center of Genetics and Life Sciences Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, 354340 Sirius, Russia; (L.S.); (J.F.); (D.K.); (K.M.); (T.K.); (E.K.K.)
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Jaroslava Fedorina
- Center of Genetics and Life Sciences Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, 354340 Sirius, Russia; (L.S.); (J.F.); (D.K.); (K.M.); (T.K.); (E.K.K.)
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Daria Kuzmina
- Center of Genetics and Life Sciences Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, 354340 Sirius, Russia; (L.S.); (J.F.); (D.K.); (K.M.); (T.K.); (E.K.K.)
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Lyudmila Malyukova
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Karina Manakhova
- Center of Genetics and Life Sciences Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, 354340 Sirius, Russia; (L.S.); (J.F.); (D.K.); (K.M.); (T.K.); (E.K.K.)
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Tatyana Kovalenko
- Center of Genetics and Life Sciences Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, 354340 Sirius, Russia; (L.S.); (J.F.); (D.K.); (K.M.); (T.K.); (E.K.K.)
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Alexandra Matskiv
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (E.X.)
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (E.X.)
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (E.X.)
| | - Alexey Ryndin
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Yuriy L. Orlov
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Elena K. Khlestkina
- Center of Genetics and Life Sciences Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, 354340 Sirius, Russia; (L.S.); (J.F.); (D.K.); (K.M.); (T.K.); (E.K.K.)
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 196632 Saint Petersburg, Russia
| |
Collapse
|
11
|
Zhang Y, Zhang Q, Wang Y, Lin S, Chen M, Cheng P, Du M, Jia X, Ye J, Wang H. Study on the effect of magnesium on leaf metabolites, growth and quality of tea tree. FRONTIERS IN PLANT SCIENCE 2023; 14:1192151. [PMID: 37746019 PMCID: PMC10514580 DOI: 10.3389/fpls.2023.1192151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
Magnesium (Mg) is one of the essential elements for the growth of tea trees. In this study, we investigated changes in metabolites, photosynthetic fluorescence parameters and quality indexes of tea leaves under different concentrations of magnesium treatment, and the results showed that there were no significant differences in the quantity and total content of metabolites in tea leaves under different Mg concentrations. The results of volcano map analysis showed that the content of 235 metabolites in tea leaves showed an increasing trend and the content of 243 metabolites showed a decreasing trend with the increase of Mg concentration. The results of the combined analysis of the OPLS-DA model and bubble map showed that 45 characteristic metabolites were screened at different concentrations of Mg. Among these, the content of 24 characteristic metabolites showed an increasing trend and 21 characteristic metabolites showed a decreasing trend with the increase of Mg concentrations. The results of KEEG pathway enrichment showed that 24 characteristic metabolites with a upward trend were significantly enriched in saccharides metabolism, nucleic acid metabolism and vitamin metabolism, while the 21 characteristic metabolites with a downward trend were enriched in the synthesis of plant secondary metabolites, phenylpropanoid biosynthesis, biosynthesis of terpenoids, synthesis and metabolism of alkaloids, and synthesis and metabolism of amino acids. It can be inferred that Mg regulation was beneficial to enhance the photosynthetic capacity of tea trees, improve the accumulation and metabolism of carbohydrate substances in tea trees, and thus promoted the growth of tea trees, but was not conducive to the synthesis of secondary metabolites and amino acids related to tea quality. The results of photosynthetic fluorescence parameters and quality indexes of the tea tree confirmed the conclusion predicted by metabolomics. This study provided a reference for regulating of the growth and quality of tea trees with Mg fertilizer in tea plantations.
Collapse
Affiliation(s)
- Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengyuan Cheng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengru Du
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
12
|
Jia X, Wang Y, Zhang Q, Lin S, Zhang Y, Du M, Chen M, Ye J, Wu Z, Wang H. Reasonable deep application of sheep manure fertilizer to alleviate soil acidification to improve tea yield and quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1179960. [PMID: 37426968 PMCID: PMC10327554 DOI: 10.3389/fpls.2023.1179960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Soil acidification in Chinese tea plantations is widespread, and it has significantly affected the growth of tea trees; it was important to explore soil remediation of acidified tea plantations in depth for the sustainable development of tea industry. In this study, the effects of sheep manure fertilizer with different application depths on soil acidification, tea yield and quality, and soil nitrogen transformation in tea plantations were analyzed for five consecutive years from 2018 to 2022. The results showed that long-term use of sheep manure fertilizer significantly reduced soil acidification (P< 0.05) in tea plantations, improved soil pH and soil ammonium nitrogen content, enhanced root activity and root nitrogen uptake capacity of tea trees, and thus improved tea yield and quality. The effect of different application depths of sheep manure fertilizer on tea yield and quality was mainly reflected in the transformation ability of soil ammonium nitrogen and nitrate nitrogen, which showed that high transformation ability of soil ammonium nitrogen and high ammonium nitrogen content were beneficial to high tea yield and vice versa, and the best effect was achieved when sheep manure was applied at a depth of 50 cm and 70 cm. The topsis analysis confirmed that sheep manure fertilization had a greater effect on root activity, ammonium nitrogen, ammonia intensity, and nifH gene. This study provided an important practical basis for the restoration of acidified tea plantation soil through sheep manure fertilizer management.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mengru Du
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Zeyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
13
|
Zhang Y, Zhang Q, Wang Y, Lin S, Chen M, Cheng P, Wang Y, Du M, Jia X, Wang H, Ye J. Effects of Magnesium on Transcriptome and Physicochemical Index of Tea Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091810. [PMID: 37176867 PMCID: PMC10181054 DOI: 10.3390/plants12091810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Magnesium (Mg) is one of the essential elements for the growth of tea tree and is extremely important for its development. In this study, we investigated the effect of Mg on the transcriptome and physicochemical indexes of tea leaves, and the results showed that Mg could significantly affect the gene expression of tea leaves. The results of Orthogonal Partial Least-Squares Discriminant Analysis (OPLS-DA) model analysis showed that a total of 300 key genes (Variable Importance for the Projection, VIP > 1) were screened under different concentrations of Mg treatment, among which 140 genes were up-regulated and 160 genes were down-regulated. The bubble map was used to screen the characteristic genes from the above key genes, and a total of 121 representative characteristic genes were obtained, mainly involving 9 metabolic pathways. Among them, gene expression of three metabolic pathways, including porphyrin metabolism, alpha-linolenic acid metabolism and photosynthesis, showed an increasing trend with the increase of Mg concentration, while gene expression of four metabolic pathways, including biosynthesis of secondary metabolites, anthocyanin biosynthesis, ABC transporters, pentose and glucuronate interconversions, showed a decreasing trend. The results of physiological index analysis showed that with the increase of Mg concentration, the photosynthetic physiological index, theanine and soluble sugar content of tea leaves showed an increasing trend, while the content of tea polyphenol, flavone and caffeine showed a decreasing trend. The results of TOPSIS analysis showed that the physiological indexes of tea trees most affected by Mg were chlorophyll, tea polyphenols and flavonoids, while the metabolic pathways most affected by Mg on gene expression were the metabolic pathways and biosynthesis of secondary metabolites. It can be seen that the effects of Mg on tea tree were mainly related to photosynthesis and synthesis of secondary metabolites, and Mg was beneficial for improving the photosynthetic capacity of tea tree, enhancing the accumulation of primary metabolites, and thus increasing tea yield. However, Mg was not conducive to the synthesis of secondary metabolites of tea tree and the accumulation of main quality indexes of tea leaves.
Collapse
Affiliation(s)
- Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan 364012, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yuchao Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengru Du
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| |
Collapse
|
14
|
Ye J, Wang Y, Lin S, Wang Y, Chen P, Hong L, Jia X, Kang J, Wu Z, Wang H. Metabolomics analysis of the effect of acidification on rhizosphere soil microecosystem of tea tree. FRONTIERS IN PLANT SCIENCE 2023; 14:1137465. [PMID: 36909384 PMCID: PMC9998672 DOI: 10.3389/fpls.2023.1137465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Acidification can seriously affect the growth of tea trees and the yield and quality of tea leaves. In this study, we analyzed the effects of acidification on the physicochemical properties, microorganisms and metabolites of tea rhizosphere soils with different pH values, and the results showed that with the increase of soil pH, the organic matter content, cation exchange capacity, microbial biomass carbon, microbial biomass nitrogen, microbial respiration intensity, bacterial number and actinomyces number in tea rhizosphere soil all showed an increasing trend, while the fungi number decreased. The results of soil metabolite analysis showed that 2376, 2377 and 2359 metabolites were detected in tea rhizosphere soil with pH values of 3.29, 4.74 and 5.32, respectively, and the number of similar compounds reached 2331, accounting for more than 98%. The results of soil metabolite content analysis showed that with the increase of soil pH, the total contents of metabolite of tea rhizosphere soil increased significantly. The results of correlation analysis between physicochemical indexes of soil and microorganisms and soil metabolites showed that physicochemical indexes of soil and microorganisms were significantly correlated with 221 soil metabolites, among which 55 were significantly positively correlated and 166 were significantly negatively correlated. Based on correlation interaction network analysis, 59 characteristic compounds were obtained and divided into 22 categories, among which 7 categories compounds showed a significant increasing trend with the increase of soil pH, while the other 15 categories compounds showed the opposite trend. Based on the functional analysis of characteristic metabolites, this study found that with the increase of soil pH in tea rhizosphere, the diversity and number of soil microorganisms increased, and the cyclic ability of C and N of tea rhizosphere soil was enhanced, which in turn might lead to the enhancement of resistance of tea tree and promote the growth of tea tree.
Collapse
Affiliation(s)
- Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Yuchao Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengyuan Chen
- College of Life Science, Longyan University, Longyan, China
| | - Lei Hong
- College of Life Science, Longyan University, Longyan, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jiaqian Kang
- College of Life Science, Longyan University, Longyan, China
| | - Zeyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Longyan University, Longyan, China
| |
Collapse
|