1
|
Guan Y, Sun Y, Yuan N, Zhang R, Lu S, Li Q, Lu X, Pang L, Hu W. The Effects of Nisin Treatment on the Phenylpropanoid and Physiological Mechanisms of Fresh-Cut Pumpkin. Foods 2025; 14:733. [PMID: 40077438 PMCID: PMC11898963 DOI: 10.3390/foods14050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Pumpkin is rich in nutritional value, and it can be eaten as a vegetable or as a staple food, making it popular among modern consumers. However, after fresh cutting, pumpkins are susceptible to moisture loss, softening, microbial contamination, and browning, all of which significantly compromise their quality during storage. Therefore, it is essential to develop effective preservation techniques for maintaining the quality of fresh-cut pumpkins. Nisin, a safe natural preservative, has not yet been studied for use on fresh-cut pumpkins. This study examines the effects of nisin treatment on the quality of fresh-cut pumpkins and then explores preservation mechanisms based on physiological and metabolomic analysis. Results show that 0.4 g/L nisin treatment effectively delays surface browning without impacting odor and maintains microbial safety throughout storage. Additionally, nisin significantly enhances the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, 4-coumarate-CoA ligase, and cinnamyl alcohol dehydrogenase, thereby promoting the accumulation of total phenols and carotenoids. The result of the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of differential metabolites between control and nisin-treated groups reveals that the most significant pathways affected by nisin treatment are amino acid metabolism and phenylpropanoid metabolism, which suggests that nisin enhances preservation by modulating phenylpropanoid metabolism and alleviating amino acid metabolism. This study provides a theoretical basis and offers new insights into improving the storage quality of fresh-cut pumpkins.
Collapse
Affiliation(s)
- Yuge Guan
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China (X.L.)
| | - Yan Sun
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China (X.L.)
| | - Ning Yuan
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Rentao Zhang
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China (X.L.)
| | - Sainan Lu
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China (X.L.)
| | - Qianqian Li
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China (X.L.)
| | - Xinghua Lu
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China (X.L.)
| | - Linjiang Pang
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China (X.L.)
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
2
|
Lewandowska W, Mahillon J, Drewnowska JM, Swiecicka I. Insight into the phylogeny and antibiotic resistance of Pseudomonas spp. originating from soil of the Białowieża National Park in Northeastern Poland. Front Microbiol 2025; 16:1454510. [PMID: 39911257 PMCID: PMC11794310 DOI: 10.3389/fmicb.2025.1454510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
The Pseudomonas genus includes species present in various environments and known for antibiotic resistance. However, only hospital-associated Pseudomonas aeruginosa have been extensively studied regarding antibiotic resistance. Thus, to fill the gap in knowledge on antibiotic resistance among other Pseudomonas spp., we investigated 41 isolates from soil samples taken in the Białowieża National Park in Northeastern Poland. This unique forest without notable anthropogenic influence, provides excellent conditions for research of antibiotic resistance from the perspective of natural environments. The phylogeny trees obtained based on the nucleotide sequence of the 16S rRNA gene and gyrB gene grouped the isolates into clusters belonging to the Pseudomonas fluorescens, Pseudomonas koreensis, and Pseudomonas putida groups, originating from the P. fluorescens lineage. All isolates under study demonstrated resistance to at least 12 out of the 24 antibiotics tested. Resistance to colistin, cefotaxime, and imipenem was detected in 73, 73, and 17% of the isolates, respectively. Most isolates showing resistance to imipenem and colistin clustered within the P. fluorescens group. Seven isolates were highly multi-resistant, to up to 18 of the 24 antibiotics tested. The presence of resistance genes related to intrinsic resistance of P. aeruginosa has been confirmed in environmental isolates.
Collapse
Affiliation(s)
- Wioleta Lewandowska
- Doctoral School, University of Białystok, Białystok, Poland
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Białystok, Poland
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Izabela Swiecicka
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Białystok, Poland
- Laboratory of Applied Microbiology, Faculty of Biology, University of Białystok, Białystok, Poland
| |
Collapse
|
3
|
Seidel P, Gottwald F, Meier E, Mazik M. Crystal structure of an aceto-nitrile solvate of 2-(3,4,5-triphen-ylphen-yl)acetic acid. Acta Crystallogr E Crystallogr Commun 2024; 80:1198-1201. [PMID: 39712148 PMCID: PMC11660473 DOI: 10.1107/s2056989024009976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 12/24/2024]
Abstract
Crystal growth of 2-(3,4,5-triphen-ylphen-yl)acetic acid (1) from aceto-nitrile yields a monosolvate, C26H20O2·CH3CN, of the space group P1. In the crystal, the title mol-ecule adopts a conformation in which the three phenyl rings are arranged in a paddlewheel-like fashion around the central arene ring and the carboxyl residue is oriented nearly perpendicular to the plane of this benzene ring. Inversion-symmetric dimers of O-H⋯O-bonded mol-ecules of 1 represent the basic supra-molecular entities of the crystal structure. These dimeric mol-ecular units are further linked by C-H⋯O=C bonds to form one-dimensional supra-molecular aggregates running along the crystallographic [111] direction. Weak Car-yl-H⋯N inter-actions occur between the mol-ecules of 1 and aceto-nitrile.
Collapse
Affiliation(s)
- Pierre Seidel
- Institut für Organische Chemie Technische Universität Bergakademie, Freiberg, Leipziger Str 29 09599 Freiberg/SachsenGermany
| | - Franziska Gottwald
- Institut für Organische Chemie Technische Universität Bergakademie, Freiberg, Leipziger Str 29 09599 Freiberg/SachsenGermany
| | - Eric Meier
- Institut für Organische Chemie Technische Universität Bergakademie, Freiberg, Leipziger Str 29 09599 Freiberg/SachsenGermany
| | - Monika Mazik
- Institut für Organische Chemie Technische Universität Bergakademie, Freiberg, Leipziger Str 29 09599 Freiberg/SachsenGermany
| |
Collapse
|
4
|
Lee CY, Harper CP, Lee SG, Qi Y, Clay T, Aoi Y, Jez JM, Kasahara H, Blodgett JAV, Kunkel BN. Investigating the biosynthesis and roles of the auxin phenylacetic acid during Pseudomonas syringae- Arabidopsis thaliana pathogenesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1408833. [PMID: 39091312 PMCID: PMC11291249 DOI: 10.3389/fpls.2024.1408833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Several plant-associated microbes synthesize the auxinic plant growth regulator phenylacetic acid (PAA) in culture; however, the role of PAA in plant-pathogen interactions is not well understood. In this study, we investigated the role of PAA during interactions between the phytopathogenic bacterium Pseudomonas syringae strain PtoDC3000 (PtoDC3000) and the model plant host, Arabidopsis thaliana. Previous work demonstrated that indole-3-acetaldehyde dehydrogenase A (AldA) of PtoDC3000 converts indole-3-acetaldehyde (IAAld) to the auxin indole-3-acetic acid (IAA). Here, we further demonstrated the biochemical versatility of AldA by conducting substrate screening and steady-state kinetic analyses, and showed that AldA can use both IAAld and phenylacetaldehyde as substrates to produce IAA and PAA, respectively. Quantification of auxin in infected plant tissue showed that AldA-dependent synthesis of either IAA or PAA by PtoDC3000 does not contribute significantly to the increase in auxin levels in infected A. thaliana leaves. Using available arogenate dehydratase (adt) mutant lines of A. thaliana compromised for PAA synthesis, we observed that a reduction in PAA-Asp and PAA-Glu is correlated with elevated levels of IAA and increased susceptibility. These results provide evidence that PAA/IAA homeostasis in A. thaliana influences the outcome of plant-microbial interactions.
Collapse
Affiliation(s)
- Chia-Yun Lee
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Christopher P. Harper
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Soon Goo Lee
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
- United States Department of Agriculture-Agricultural Research Service, New Orleans, LA, United States
| | - Taylor Clay
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Yuki Aoi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Joseph M. Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Joshua A. V. Blodgett
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Barbara N. Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
5
|
Jing F, Shi S, Kang W, Guan J, Lu B, Wu B, Wang W. The Physiological Basis of Alfalfa Plant Height Establishment. PLANTS (BASEL, SWITZERLAND) 2024; 13:679. [PMID: 38475525 DOI: 10.3390/plants13050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Plant height plays an important role in crop yield, product quality, and cultivation management. However, the physiological mechanisms that regulate the establishment of plant height in alfalfa plants remain unclear. Herein, we measured plant height traits, leaf characteristics, photosynthetic physiology, cell wall composition, and endogenous hormone contents of tall- and short-stalked alfalfa materials at different reproductive periods. We analyzed the physiology responsible for differences in plant height. The results demonstrated that the number of internodes in tall- and short-stalked alfalfa materials tended to converge with the advancement of the fertility period. Meanwhile, the average internode length (IL) of tall-stalked materials was significantly higher than that of short-stalked materials at different fertility periods, with internode length identified as the main trait determining the differences in alfalfa plant height. Leaf characteristics, which are closely related to photosynthetic capacity, are crucial energy sources supporting the expression of plant height traits, and we found that an increase in the number of leaves contributed to a proportional increase in plant height. Additionally, a significant positive correlation was observed between plant height and leaf dry weight per plant during the branching and early flowering stages of alfalfa. The leaves of alfalfa affect plant height through photosynthesis, with the budding stage identified as the key period for efficient light energy utilization. Plant height at the budding stage showed a significant positive correlation with soluble sugar (SS) content and a significant negative correlation with intercellular CO2 concentration. Moreover, we found that alfalfa plant height was significantly correlated with the contents of indole-3-acetic acid in stem tips (SIAA), gibberellin A3 in leaves (LGA3), zeatin in stem tips (SZT), and abscisic acid in leaves (LABA). Further investigation revealed that SS, SIAA, and LGA3 contents were important physiological indicators affecting alfalfa plant height. This study provides a theoretical basis for understanding the formation of alfalfa plant height traits and for genetic improvement studies.
Collapse
Affiliation(s)
- Fang Jing
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shangli Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenjuan Kang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Guan
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Baofu Lu
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Bei Wu
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenjuan Wang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Mao W, Bao C, Cheng Q, Liang N, Wang L, Yang H. All-Year High IAA and ABA Contents in Rhizome Buds May Contribute to Natural Four-Season Shooting in Woody Bamboo Cephalostachyum pingbianense. PLANTS (BASEL, SWITZERLAND) 2024; 13:410. [PMID: 38337943 PMCID: PMC10857254 DOI: 10.3390/plants13030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
To explore the regulation mechanism of endogenous phytohormones on rhizome bud germination in Cephalostachyum pingbianense, the contents of IAA, ABA, GA, and CTK in seven above- and under-ground bamboo structure components were determined using enzyme-linked immunosorbent assays (ELISA). The results showed that a higher content of IAA, GA, and CTK all year was found in above-ground components and dormant rhizome buds. Meanwhile, a higher ABA content in young shoots and a lower ABA content in the culm base and dormant rhizome buds were detected during the peak period of shooting. The amounts of emerging shoots and the grown bamboo culms were positively correlated with the content of IAA and the ratio of IAA/ABA and (IAA + CTK + GA)/ABA, while they were negatively correlated with the ratio of CTK/IAA in dormant rhizome buds. The all-year high contents of IAA (19-31 ng/g) and ABA (114-144 ng/g) in rhizome buds, as well as interactions among four hormones, may be the key physiological mechanisms to maintain rhizome bud germination throughout the year in C. pingbianense. As C. pingbianense is a special bamboo species of multi-season shoot sprouting, the above results may supplement scientific data for a comprehensive understanding of physiological mechanisms within the bamboo subfamily.
Collapse
Affiliation(s)
- Wei Mao
- Faculty of Foreign Languages, Southwest Forestry University, Kunming 650233, China;
| | - Changyan Bao
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China; (C.B.); (Q.C.); (N.L.)
| | - Qian Cheng
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China; (C.B.); (Q.C.); (N.L.)
| | - Ning Liang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China; (C.B.); (Q.C.); (N.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China
| | - Lianchun Wang
- Forestry College, Southwest Forestry University, Kunming 650233, China
| | - Hanqi Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China; (C.B.); (Q.C.); (N.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China
| |
Collapse
|
7
|
Derevyanchuk M, Kretynin S, Bukhonska Y, Pokotylo I, Khripach V, Ruelland E, Filepova R, Dobrev PI, Martinec J, Kravets V. Influence of Exogenous 24-Epicasterone on the Hormonal Status of Soybean Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3586. [PMID: 37896049 PMCID: PMC10609748 DOI: 10.3390/plants12203586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Brassinosteroids (BRs) are key phytohormones involved in the regulation of major processes of cell metabolism that guide plant growth. In the past decades, new evidence has made it clear that BRs also play a key role in the orchestration of plant responses to many abiotic and biotic stresses. In the present work, we analyzed the impact of foliar treatment with 24-epicastasterone (ECS) on the endogenous content of major phytohormones (auxins, salicylic acid, jasmonic acid, and abscisic acid) and their intermediates in soybean leaves 7 days following the treatment. Changes in the endogenous content of phytohormones have been identified and quantified by LC/MS. The obtained results point to a clear role of ECS in the upregulation of auxin content (indole-3-acetic acid, IAA) and downregulation of salicylic, jasmonic, and abscisic acid levels. These data confirm that under optimal conditions, ECS in tested concentrations of 0.25 µM and 1 µM might promote growth in soybeans by inducing auxin contents. Benzoic acid (a precursor of salicylic acid (SA)), but not SA itself, has also been highly accumulated under ECS treatment, which indicates an activation of the adaptation strategies of cell metabolism to possible environmental challenges.
Collapse
Affiliation(s)
- Michael Derevyanchuk
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Serhii Kretynin
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Yaroslava Bukhonska
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Igor Pokotylo
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
- Génie Enzymatique et Cellulaire, UMR CNRS 7025, Université de Technologie de Compiègne, 60203 Compiègne, France;
| | - Vladimir Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus
| | - Eric Ruelland
- Génie Enzymatique et Cellulaire, UMR CNRS 7025, Université de Technologie de Compiègne, 60203 Compiègne, France;
| | - Roberta Filepova
- Institute of Experimental Botany, The Czech Academy of Sciences, 16502 Prague, Czech Republic
| | - Petre I. Dobrev
- Institute of Experimental Botany, The Czech Academy of Sciences, 16502 Prague, Czech Republic
| | - Jan Martinec
- Institute of Experimental Botany, The Czech Academy of Sciences, 16502 Prague, Czech Republic
| | - Volodymyr Kravets
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| |
Collapse
|