1
|
Ramata-Stunda A, Boroduskis M, Pastare L, Berga M, Kienkas L, Patetko L, Skudrins G, Reihmane D, Nakurte I. In Vitro Safety and Efficacy Evaluation of a Juniperus communis Callus Culture Extract and Matricaria recutita Processing Waste Extract Combination as a Cosmetic Ingredient. PLANTS (BASEL, SWITZERLAND) 2024; 13:287. [PMID: 38256840 PMCID: PMC10818699 DOI: 10.3390/plants13020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
For skin health promotion and cosmetic applications, combinations of plant cell extracts are extensively utilized. As most natural ingredient suppliers offer crude extracts from individual plants or specific isolated compounds, the potential interactions between them are assessed in the development phase of cosmetic products. The industry seeks extract combinations that have undergone optimization and scrutiny for their bioactivities. This study presents a combination of two sustainably produced botanical ingredients and outlines their chemical composition, in vitro safety, and bioactivity for skin health enhancement. The amalgamation comprises the extract of Matricaria recutita processing waste and the extract from Juniperus communis callus culture. Chemical analysis revealed distinct compounds within the extracts, and their combination led to a broader array of potentially synergistic compounds. In vitro assessments on skin cells demonstrated that the combination possesses robust antioxidant properties and the ability to stimulate keratinocyte proliferation, along with regulating collagen type I and matrix metalloproteinase 1 (MMP-1) production by dermal fibroblasts. The identified traits of this combination render it an appealing cosmetic component. To the best of our knowledge, this represents the first case when the extracts derived from medicinal plant processing waste and biotechnological plant cell cultivation processes have been combined and evaluated for their bioactivity.
Collapse
Affiliation(s)
- Anna Ramata-Stunda
- Alternative Plants, Ltd., 2 Podraga Str., LV-1007 Riga, Latvia; (M.B.); (D.R.)
| | - Martins Boroduskis
- Alternative Plants, Ltd., 2 Podraga Str., LV-1007 Riga, Latvia; (M.B.); (D.R.)
| | - Laura Pastare
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (L.P.); (M.B.); (G.S.); (I.N.)
| | - Marta Berga
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (L.P.); (M.B.); (G.S.); (I.N.)
| | - Liene Kienkas
- Field and Forest, Ltd., 2 Izstades Str., Priekuli Parish, LV-4126 Cesis, Latvia;
| | - Liene Patetko
- Faculty of Biology, University of Lavia, 1 Jelgavas Str., LV-1004 Riga, Latvia;
| | - Gundars Skudrins
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (L.P.); (M.B.); (G.S.); (I.N.)
| | - Dace Reihmane
- Alternative Plants, Ltd., 2 Podraga Str., LV-1007 Riga, Latvia; (M.B.); (D.R.)
| | - Ilva Nakurte
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (L.P.); (M.B.); (G.S.); (I.N.)
| |
Collapse
|
2
|
Zieniuk B. Dihydrocaffeic Acid-Is It the Less Known but Equally Valuable Phenolic Acid? Biomolecules 2023; 13:biom13050859. [PMID: 37238728 DOI: 10.3390/biom13050859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Dihydrocaffeic acid (DHCA) is a phenolic acid bearing a catechol ring and three-carbon side chain. Despite its being found in minor amounts in numerous plants and fungi of different origins, it has attracted the interest of various research groups in many fields of science, from food to biomedical applications. The review article presented herein aims to show a wider audience the health benefits and therapeutic, industrial, and nutritional potential of dihydrocaffeic acid, by sheddinglight on its occurrence, biosynthesis, bioavailability, and metabolism. The scientific literature describes at least 70 different derivatives of dihydrocaffeic acid, both those occurring naturally and those obtained via chemical and enzymatic methods. Among the most frequently used enzymes that were applied for the modification of the parent DHCA structure, there are lipases that allow for obtaining esters and phenolidips, tyrosinases used for the formation of the catechol ring, and laccases to functionalize this phenolic acid. In many studies, both in vitro and in vivo, the protective effect of DHCA and its derivatives on cells subjected to oxidative stress and inflammation were acknowledged.
Collapse
Affiliation(s)
- Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| |
Collapse
|
3
|
Pastare L, Berga M, Kienkas L, Boroduskis M, Ramata-Stunda A, Reihmane D, Senkovs M, Skudrins G, Nakurte I. Exploring the Potential of Supercritical Fluid Extraction of Matricaria chamomilla White Ray Florets as a Source of Bioactive (Cosmetic) Ingredients. Antioxidants (Basel) 2023; 12:1092. [PMID: 37237958 PMCID: PMC10215379 DOI: 10.3390/antiox12051092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Aromatic and medicinal plants are a great source of useful bioactive compounds for use in cosmetics, drugs, and dietary supplements. This study investigated the potential of using supercritical fluid extracts obtained from Matricaria chamomilla white ray florets, a kind of industrial herbal byproduct, as a source of bioactive cosmetic ingredients. Response surface methodology to optimize the supercritical fluid extraction process by analyzing the impact of pressure and temperature on yield and the main bioactive compound groups were used. High-throughput 96-well plate spectrophotometric methods were used to analyze the extracts for total phenols, flavonoids, tannins, and sugars, as well as their antioxidant capacity. Gas chromatography and liquid chromatography-mass spectrometry was used to determine the phytochemical composition of the extracts. The extracts were also analyzed for antimicrobial activity, cytotoxicity, phototoxicity, and melanin content. Statistical analysis was performed to establish correlations between the extracts and develop models to predict the targeted phytochemical recovery and chemical and biological activities. The results show that the extracts contained a diverse range of phytochemical classes and had cytotoxic, proliferation-reducing, and antimicrobial activities, making them potentially useful in cosmetic formulations. This study provides valuable insights for further research on the uses and mechanisms of action of these extracts.
Collapse
Affiliation(s)
- Laura Pastare
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (M.B.); (G.S.); (I.N.)
| | - Marta Berga
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (M.B.); (G.S.); (I.N.)
| | - Liene Kienkas
- Field and Forest, SIA, 2 Izstades Str., Priekuli Parish, LV-4126 Priekuli, Latvia;
| | - Martins Boroduskis
- Alternative Plants, SIA, 2 Podraga Str, LV-1023 Riga, Latvia; (M.B.); (A.R.-S.); (D.R.)
| | - Anna Ramata-Stunda
- Alternative Plants, SIA, 2 Podraga Str, LV-1023 Riga, Latvia; (M.B.); (A.R.-S.); (D.R.)
| | - Dace Reihmane
- Alternative Plants, SIA, 2 Podraga Str, LV-1023 Riga, Latvia; (M.B.); (A.R.-S.); (D.R.)
| | - Maris Senkovs
- Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia;
| | - Gundars Skudrins
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (M.B.); (G.S.); (I.N.)
| | - Ilva Nakurte
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (M.B.); (G.S.); (I.N.)
| |
Collapse
|
4
|
Nakurte I, Berga M, Mežaka I. Phytochemical Diversity Comparison in Leaves and Roots of Wild and Micropropagated Latvian Sea Holly ( Eryngium maritimum L.). Molecules 2023; 28:molecules28093924. [PMID: 37175333 PMCID: PMC10180267 DOI: 10.3390/molecules28093924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The goal of the current study was to compare the chemical composition of the roots, shoots, and leaves of wild-growing Eryngium maritimum L., and of in vitro and in field-cultivated plants in Latvia. The essential oil yield obtained by hydrodistillation ranged from 0.14% to 0.54%, while analysis of the chemical composition using GC-MS revealed a total of 44 different volatiles, with differences in the types and amounts of volatiles between the leaves and roots. Using 96-well plate techniques, the concentration of total phenolic compounds, saponins, and sugars in the aqueous ethanolic extracts of E. maritimum were assessed, along with their capacity to scavenge stable DPPH radicals. Extracts from roots had a lower concentration of total phenolic compounds compared to those from the leaves of wild grown and cultivated plants but did not differ from in vitro shoots. Root, leaf, and shoot samples of the same genotype from different growth conditions had approximately the same concentration of total saponins, while total sugar concentrations were higher in the roots. The growth conditions had a significant effect on the concentration of total phenolic compounds and antiradical activity, with differences that were significant observed between plant aboveground and belowground parts. Analysis using UHPLC-ESI-q-TOF-MS revealed 63 compounds, with amino acids and hydroxycinnamic acid derivatives (such as chlorogenic and rosmarinic acid) being the major compound groups that significantly differed between plant growth conditions. We also demonstrated that rapid screening of volatile compounds in in vitro plants using headspace gas chromatography mass spectrometry analyses can predict the formation of marker compounds in the same mericlones grown in field conditions. These findings provide valuable insights into the chemical composition of E. maritimum and its potential for use in various applications.
Collapse
Affiliation(s)
- Ilva Nakurte
- Institute for Environmental Solutions, "Lidlauks", Priekuli Parish, LV-4126 Cesis, Latvia
| | - Marta Berga
- Institute for Environmental Solutions, "Lidlauks", Priekuli Parish, LV-4126 Cesis, Latvia
| | - Ieva Mežaka
- Institute for Environmental Solutions, "Lidlauks", Priekuli Parish, LV-4126 Cesis, Latvia
| |
Collapse
|