1
|
El-Nahas GA, Ibrahim ME, Baka ZAM, Ibrahim AH. Scrutinizing harsh habitats endophytic fungi and their prospective effect on water-stressed maize seedlings. Int Microbiol 2024:10.1007/s10123-024-00609-4. [PMID: 39541056 DOI: 10.1007/s10123-024-00609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Drought constitutes a significant abiotic stressor that hinders plant growth and productivity in many countries. Habitat-adapted endophytic fungi offer an environmentally sustainable approach to address this issue by promoting plant development and enhancing resilience against abiotic stresses. In this study, 30 endophytic fungal isolates were recovered from some wild plants in the extreme habitats of Port Said Governorate, Egypt, and evaluated for their drought tolerance using polyethylene glycol (PEG-6000). Only eight isolates demonstrated drought tolerance properties and were further evaluated for their plant growth-promoting biochemical activities and ability to improve maize germination under simulated drought conditions. All eight isolates exhibited enzyme activity for endo-1,4-β-glucanase, amylase, and pectinase, and most displayed significant nutrient mobilization, with siderophores production ranging from 4 to 89%, ammonia production from 1 to 7 μmol/ml, and phosphate solubilization from 129 to 256 µg/ml. Additionally, all isolates showed strong antioxidant activity and high total phenolic content, with some also producing notable levels of indole acetic acid (IAA) and gibberellic acid (GA3) as plant growth hormones. Coating maize grains with spore suspensions of the eight fungal isolates, in general, significantly increased their germination parameters and seedling vigor in vitro under 8% PEG-6000. This enhancement was particularly pronounced with Neurospora sitophila (P8L4M1) and Penicillium tardochrysogenum (P15L4M1), which increased the vigor of maize seedlings by approximately 308% compared to untreated control. Molecular identification of P8L4M1 and P15L4M1 was performed by amplifying the 28S rRNA gene. This study disclosed unique endophytic fungal isolates with promising potential for enhancing drought resistance in maize.
Collapse
Affiliation(s)
- Gehad A El-Nahas
- Department of Botany, Faculty of Science, Port Said University, Port Said, Egypt.
| | - Mohsen E Ibrahim
- Department of Botany, Faculty of Science, Port Said University, Port Said, Egypt
| | - Zakaria A M Baka
- Department of Botany and Microbiology, Faculty of Science, University of Damietta, New Damietta, Egypt
| | - Ali H Ibrahim
- Department of Botany, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
2
|
Mutungi PM, Wekesa VW, Onguso J, Kanga E, Baleba SBS, Boga HI. Fungal endophytes from saline-adapted shrubs induce salinity stress tolerance in tomato seedlings. FEMS MICROBES 2024; 5:xtae012. [PMID: 38770063 PMCID: PMC11104533 DOI: 10.1093/femsmc/xtae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/15/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
To meet the food and feed demands of the growing population, global food production needs to double by 2050. Climate change-induced challenges to food crops, especially soil salinization, remain a major threat to food production. We hypothesize that endophytic fungi isolated from salt-adapted host plants can confer salinity stress tolerance to salt-sensitive crops. Therefore, we isolated fungal endophytes from shrubs along the shores of saline alkaline Lake Magadi and evaluated their ability to induce salinity stress tolerance in tomato seeds and seedlings. Of 60 endophytic fungal isolates, 95% and 5% were from Ascomycetes and Basidiomycetes phyla, respectively. The highest number of isolates (48.3%) were from the roots. Amylase, protease and cellulase were produced by 25, 30 and 27 isolates, respectively; and 32 isolates solubilized phosphate. Only eight isolates grew at 1.5 M NaCl. Four fungal endophytes (Cephalotrichum cylindricum, Fusarium equiseti, Fusarium falciforme and Aspergilus puniceus) were tested under greenhouse conditions for their ability to induce salinity tolerance in tomato seedlings. All four endophytes successfully colonized tomato seedlings and grew in 1.5 M NaCl. The germination of endophyte-inoculated seeds was enhanced by 23%, whereas seedlings showed increased chlorophyll and biomass content and decreased hydrogen peroxide content under salinity stress, compared with controls. The results suggest that the the four isolates can potentially be used to mitigate salinity stress in tomato plants in salt-affected soils.
Collapse
Affiliation(s)
- Priscillar Mumo Mutungi
- Jomo Kenyatta University of Agriculture and Technology, Institute for Biotechnology Research, P.O. Box 62000–00200, Nairobi, Kenya
- Wildlife Research and Training Institute, Research, Development and Coordination, P.O. Box 842–20117, Naivasha, Kenya
| | - Vitalis Wafula Wekesa
- Bioline Agrosciences Africa Limited, Production, P.O. Box 1927–20117, Naivasha, Kenya
| | - Justus Onguso
- Jomo Kenyatta University of Agriculture and Technology, Institute for Biotechnology Research, P.O. Box 62000–00200, Nairobi, Kenya
| | - Erustus Kanga
- Kenya Wildlife Service, P.O. Box 40241–00100, Nairobi, Kenya
| | - Steve B S Baleba
- Department of Evolutionary Neuroethology, Max Planck Institute of Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Hamadi Iddi Boga
- Jomo Kenyatta University of Agriculture and Technology, Institute for Biotechnology Research, P.O. Box 62000–00200, Nairobi, Kenya
| |
Collapse
|
3
|
Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1250020. [PMID: 38034581 PMCID: PMC10684941 DOI: 10.3389/fpls.2023.1250020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The global healthcare market in the post-pandemic era emphasizes a constant pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants are the only natural resource to meet this by supplying an array of bioactive secondary metabolites in an economic, greener and sustainable manner. Driven by the thrust in demand for natural immunity imparting nutraceutical and life-saving plant-derived drugs, the acreage for commercial cultivation of medicinal plants has dramatically increased in recent years. Limited resources of land and water, low productivity, poor soil fertility coupled with climate change, and biotic (bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought, salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant productivity enhancement through sustainable strategies. Plants evolved intricate physiological (membrane integrity, organelle structural changes, osmotic adjustments, cell and tissue survival, reclamation, increased root-shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones synthesis, proline, protein levels, antioxidant enzymes accumulation, ion exclusion, generation of heat-shock proteins, synthesis of allelochemicals. etc.), and cellular (sensing of stress signals, signaling pathways, modulating expression of stress-responsive genes and proteins, etc.) mechanisms to combat stresses. Endophytes, colonizing in different plant tissues, synthesize novel bioactive compounds that medicinal plants can harness to mitigate environmental cues, thus making the agroecosystems self-sufficient toward green and sustainable approaches. Medicinal plants with a host set of metabolites and endophytes with another set of secondary metabolites interact in a highly complex manner involving adaptive mechanisms, including appropriate cellular responses triggered by stimuli received from the sensors situated on the cytoplasm and transmitting signals to the transcriptional machinery in the nucleus to withstand a stressful environment effectively. Signaling pathways serve as a crucial nexus for sensing stress and establishing plants' proper molecular and cellular responses. However, the underlying mechanisms and critical signaling pathways triggered by endophytic microbes are meager. This review comprehends the diversity of endophytes in medicinal plants and endophyte-mediated plant-microbe interactions for biotic and abiotic stress tolerance in medicinal plants by understanding complex adaptive physiological mechanisms and signaling cascades involving defined molecular and cellular responses. Leveraging this knowledge, researchers can design specific microbial formulations that optimize plant health, increase nutrient uptake, boost crop yields, and support a resilient, sustainable agricultural system.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Shweta Dwivedi
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanhaiya Lal
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tripta Jhang
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
4
|
Juby S, Krishnankutty RE, Kochupurakkal J. Drought-Alleviating Effects of Endophytic Bacteria Isolated from Xerophytic Plants on Capsicum annuum L. Seedlings. Curr Microbiol 2023; 80:403. [PMID: 37930407 DOI: 10.1007/s00284-023-03494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/24/2023] [Indexed: 11/07/2023]
Abstract
In the current study, 51 endophytic bacteria were isolated from 5 different xerophytic plants. Their drought tolerance properties were screened in vitro, and from these, four endophytes with tolerance up to - 1.5 MPa water potential were further selected and identified as Acinetobacter sp. Eo3, Pseudomonas sp. Ni5, Bacillus safensis Ni7, and Stenotrophomonas sp. C3. Due to biosafety concern, Acinetobacter sp. Eo3 and Pseudomonas sp. Ni5 were excluded from further investigation, while B. safensis Ni7 and Stenotrophomonas sp. C3 were subjected to detailed study. The drought tolerance properties of these endophytes were evaluated in vivo using Capsicum annuum L. by analysing the growth parameters (leaf number, root number, shoot length, and plant fresh weight) as well as physiological and biochemical parameters (stomatal index, relative water content, chlorophyll content, and carbohydrate accumulation) of bacteria-treated and control seedlings. Here, treatment with B. safensis Ni7 and Stenotrophomonas sp. C3 was found to result in statistically significant enhancement (P ≤ 0.001) of the measured parameters of plants when compared with the control groups. In the case of fresh weight itself, Ni7 and C3 treatment was found to result in values of 157.76 and 142.8 mg, respectively, and was statistically significant enhancement as the same for nutrient broth and distilled water control were 73.3 mg and 70.5 mg only. Additionally, the endophyte-treated seedlings displayed significant improvement in other growth parameters even under induced drought stress. These findings highlight the potential of xerophytic-derived bacterial endophytes to have significant role in mitigating the drought stress effects in plants with the promises for field application.
Collapse
Affiliation(s)
- Silju Juby
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India
| | | | | |
Collapse
|
5
|
Kaur R, Saxena S. Evaluation of drought-tolerant endophytic fungus Talaromyces purpureogenus as a bioinoculant for wheat seedlings under normal and drought-stressed circumstances. Folia Microbiol (Praha) 2023; 68:781-799. [PMID: 37076748 DOI: 10.1007/s12223-023-01051-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
The present work is aimed to hypothesize that fungal endophytes associated with wheat (Triticum aestivum L.) plants can play a variety of roles in biotechnology including plant growth. Out of 67 fungal isolates, five maximum drought-tolerant isolates were used to check their various plant growth-promoting traits, antioxidants, and antifungal activities under secondary screening. Fungal isolate #8TAKS-3a exhibited the maximum drought tolerance capacity and potential to produce auxin, gibberellic acid, ACC deaminase, phosphate, zinc solubilization, ammonia, siderophore, and extracellular enzyme activities followed by #6TAKR-1a isolate. In terms of antioxidant activities, #8TAKS-3a culture also showed maximum DPPH scavenging, total antioxidant, and NO-scavenging activities. However, #6TAKR-1a exhibited maximum total flavonoid content, total phenolic content, and Fe-reducing power and also the highest growth inhibition of Aspergillus niger (ITCC 6152) and Colletotrichum sp. (ITCC 6152). Based on morphological characters and multi-locus phylogenetic analysis of the nuc rDNA internal transcribed spacer region (ITS1-5.8S-ITS2 = ITS), β-tubulin (TUB 2), and RNA polymerase II second largest subunit (RPB2) genes, potent fungal isolate #8TAKS-3a was identified as Talaromyces purpureogenus. Under the in vitro conditions, T. purpureogenus (#8TAKS-3a) was used as a bioinoculant that displayed a significant increase in various physio-biochemical growth parameters under normal and stressed conditions (p < 0.05). Our results indicate that drought stress-tolerant T. purpureogenus can be further used for field testing as a growth promoter.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
6
|
Wang Y, Zhang Y, Cong H, Li C, Wu J, Li L, Jiang J, Cao X. Cultivable Endophyte Resources in Medicinal Plants and Effects on Hosts. Life (Basel) 2023; 13:1695. [PMID: 37629552 PMCID: PMC10455732 DOI: 10.3390/life13081695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
With the increasing demand for medicinal plants and the increasing shortage of resources, improving the quality and yield of medicinal plants and making more effective use of medicinal plants has become an urgent problem to be solved. During the growth of medicinal plants, various adversities can lead to nutrient loss and yield decline. Using traditional chemical pesticides to control the stress resistance of plants will cause serious pollution to the environment and even endanger human health. Therefore, it is necessary to find suitable pesticide substitutes from natural ingredients. As an important part of the microecology of medicinal plants, endophytes can promote the growth of medicinal plants, improve the stress tolerance of hosts, and promote the accumulation of active components of hosts. Endophytes have a more positive and direct impact on the host and can metabolize rich medicinal ingredients, so researchers pay attention to them. This paper reviews the research in the past five years, aiming to provide ideas for improving the quality of medicinal plants, developing more microbial resources, exploring more medicinal natural products, and providing help for the development of research on medicinal plants and endophytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (Y.W.); (Y.Z.); (H.C.); (C.L.); (J.W.); (L.L.); (J.J.)
| |
Collapse
|
7
|
Li X, Ma S, Meng Y, Wei W, Peng C, Ling C, Fan S, Liu Z. Characterization of Antagonistic Bacteria Paenibacillus polymyxa ZYPP18 and the Effects on Plant Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:2504. [PMID: 37447065 DOI: 10.3390/plants12132504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Paenibacillus polymyxa is a plant growth-promoting rhizobacteria (PGPR) that has significant biocontrol properties. Wheat sheath blight caused by Rhizoctonia cerealis is a significant soil-borne disease of wheat that causes significant losses in wheat production, and the biological control against the disease has received extensive attention. P. polymyxa ZYPP18 was identified using morphological and molecular characterization. An antagonistic activity experiment verified that ZYPP18 inhibits the growth of R. cerealis on artificial growth media. A detached leaf assay verified that ZYPP18 inhibits the expansion of wheat sheath blight on the detached leaf. ZYPP18 has been found to possess plant growth-promoting properties, as well as the ability to solubilize phosphate and generate indole-3-acetic acid. Results from hydroponic experiments showed that wheat seedlings treated with ZYPP18 grew faster. Additionally, pot experiments and field experiments demonstrated that ZYPP18 effectively controls the occurrence of wheat sheath blight. ZYPP18 reduced the incidence of wheat sheath blight in wheat seedlings by 37.37% and 37.90%, respectively. The control effect of ZYPP18 on wheat sheath blight was 56.30% and 65.57%, respectively. These findings provide evidence that P. polymyxa ZYPP18 is an effective biological factor that can control disease and promote plant growth.
Collapse
Affiliation(s)
- Xiangying Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Sujing Ma
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yuan Meng
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Wei Wei
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Chen Peng
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Chunli Ling
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Susu Fan
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhenyu Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|