1
|
Barreto Silva LM, Cunha Oliveira R, Dominguez Formoso D, Bruno Loureiro M, Gonzaga Fernandez L. Properties and medical applications of the Euphorbiaceae family and their bioproducts: a patent review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:147-163. [PMID: 39136738 DOI: 10.1007/s00210-024-03350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 02/02/2025]
Abstract
Euphorbiaceae is a family of dicotyledonous angiosperm plants that occur mainly in the tropics and produce a variety of secondary metabolites. Given the abundance of the Euphorbiaceae species and the diversity of substances they produce, this study aims to investigate paten documents concerning inventions and models involving the pharmacological use of these species, contributing to the study of their medicinal potential. The present review delves into patent documents in the Patentscope database, from the application of search criteria, such as "simple search" with the "Euphorbiaceae" keyword, limited to the front page, with stemming, without language limitation, from any patent office, and excluding non-patent literature (NPL). The selected patents were prevalently published in East Asian offices between 1998 and 2023, including 41 species of Euphorbiaceae of 19 genera, with 31 metabolites represented. The collected metabolites predominantly exhibited anti-tumoral (N = 21), anti-inflammatory (N = 10), antioxidant (N = 7), and anti-bacterial (N = 6) activities. Additionally, some substances have shown valid properties for treating non-communicable diseases (N = 8). The patents demonstrate the biotechnological potential of species from the Euphorbiaceae family, which are exceptionally satile regarding their applications in the health sector. However, the small number of patents that identify specific metabolites hinders a more thorough investigation of the activities of the products extracted from these species.
Collapse
Affiliation(s)
| | | | - Dianne Dominguez Formoso
- Department of Natural Products Chemistry, Federal University of São Carlos, São Paulo, São Carlos, Brazil
| | - Marta Bruno Loureiro
- Biochemistry and Biophysics Department, Federal University of Bahia, Salvador, Brazil
| | | |
Collapse
|
2
|
Gali S, Kundu A, Sharma S, Ahn MY, Puia Z, Kumar V, Kim IS, Kwak JH, Palit P, Kim HS. Therapeutic potential of bark extracts from Macaranga denticulata on renal fibrosis in streptozotocin-induced diabetic rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:911-933. [PMID: 39306745 DOI: 10.1080/15287394.2024.2394586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Macaranga denticulata (MD) bark is commonly utilized in traditional medicine for diabetes prevention and treatment. The bark extract of MD is rich in prenyl or farnesyl flavonoids and stilbenes, which possess antioxidant properties. Although data suggest the potential therapeutic benefits of the use of MD in treating diabetic nephropathy (DN), the precise mechanisms underlying MD-initiated protective effects against DN are not well understood. This study aimed to assess the renoprotective properties of MD extract by examining renofibrosis inhibition, oxidative stress, and inflammation utilizing streptozotocin-induced DN male Sprague - Dawley rats. Diabetic rats were intraperitoneally injected with streptozotocin (STZ) to induce diabetes. After 6 days, these rats were orally administered MD extract (200 mg/kg/day) or metformin (200 mg/kg/day) for 14 days. The administration of MD extract significantly lowered blood glucose levels, restored body weight, and reduced urine levels of various biomarkers associated with kidney functions. Histopathological analysis revealed protective effects in both kidneys and pancreas. Further, MD extract significantly restored abnormalities in advanced glycation end products, oxidative stress biomarkers, and proinflammatory cytokine levels in STZ-treated rats. MD extract markedly reduced renal fibrosis biomarker levels, indicating recovery from renal injury, and reversed dysregulation of sirtuins and claudin-1 in the kidneys of rats with STZ-induced diabetes. In conclusion, data demonstrated the renoprotective role of MD extract, indicating plant extract's ability to suppress oxidative stress and regulate proinflammatory pathways during pathological changes in diabetic nephropathy.
Collapse
Affiliation(s)
- Sreevarsha Gali
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
- Department of Pharmacology, GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, India
| | - Swati Sharma
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Mee-Young Ahn
- Department of Biochemistry and Health Science, Changwon National University, Changwon-si, Republic of Korea
| | - Zothan Puia
- Department of Pharmacy, Regional Institute of Paramedical & Nursing Sciences, Aizawl, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, India
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Jeong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| |
Collapse
|
3
|
Wirasisya DG, Kincses A, Vidács L, Szemerédi N, Spengler G, Barta A, Mertha IG, Hohmann J. Indonesian Euphorbiaceae: Ethnobotanical Survey, In Vitro Antibacterial, Antitumour Screening and Phytochemical Analysis of Euphorbia atoto. PLANTS (BASEL, SWITZERLAND) 2023; 12:3836. [PMID: 38005733 PMCID: PMC10675575 DOI: 10.3390/plants12223836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Indonesia is among the countries with the most significant biodiversity globally. Jamu, the traditional medicine of Indonesia, predominantly uses herbal materials and is an integral component of the Indonesian healthcare system. The present study reviewed the ethnobotanical data of seven Indonesian Euphorbiaceae species, namely Euphorbia atoto, E. hypericifolia, Homalanthus giganteus, Macaranga tanarius, Mallotus mollissimus, M. rufidulus, and Shirakiopsis indica, based on the RISTOJA database and other literature sources. An antimicrobial screening of the plant extracts was performed in 15 microorganisms using the disk diffusion and broth microdilution methods, and the antiproliferative effects were examined in drug-sensitive Colo 205 and resistant Colo 320 cells by the MTT assay. The antimicrobial testing showed a high potency of M. tanarius, H. giganteus, M. rufidulus, S. indica, and E. atoto extracts (MIC = 12.5-500 µg/mL) against different bacteria. In the antitumour screening, remarkable activities (IC50 0.23-2.60 µg/mL) were demonstrated for the extracts of H. giganteus, M. rufidulus, S. indica, and E. atoto against Colo 205 cells. The n-hexane extract of E. atoto, with an IC50 value of 0.24 ± 0.06 µg/mL (Colo 205), was subjected to multistep chromatographic separation, and 24-methylene-cycloartan-3β-ol, jolkinolide E, tetra-tert-butyl-diphenyl ether, α-tocopherol, and β-sitosterol were isolated.
Collapse
Affiliation(s)
- Dyke Gita Wirasisya
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (D.G.W.); (A.K.); (L.V.); (A.B.)
- Department of Pharmacy, Faculty of Medicine, University of Mataram, Mataram 83126, Indonesia
| | - Annamária Kincses
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (D.G.W.); (A.K.); (L.V.); (A.B.)
| | - Lívia Vidács
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (D.G.W.); (A.K.); (L.V.); (A.B.)
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary; (N.S.); (G.S.)
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary; (N.S.); (G.S.)
| | - Anita Barta
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (D.G.W.); (A.K.); (L.V.); (A.B.)
| | - I Gde Mertha
- Department of Biology Education, Faculty of Teacher Training and Education, University of Mataram, Mataram 83126, Indonesia;
| | - Judit Hohmann
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (D.G.W.); (A.K.); (L.V.); (A.B.)
- ELKH-USZ Biologically Active Natural Products Research Group, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
4
|
Yu F, Teng Y, Li J, Yang S, Zhang Z, He Y, Yang H, Ding CF, Zhou P. Effects of a Ganoderma lucidum Proteoglycan on Type 2 Diabetic Rats and the Recovery of Rat Pancreatic Islets. ACS OMEGA 2023; 8:17304-17316. [PMID: 37214729 PMCID: PMC10193549 DOI: 10.1021/acsomega.3c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023]
Abstract
Type 2 diabetes (T2D) results from both insulin resistance and pancreatic β-cell dysfunction. A natural proteoglycan extracted from Ganoderma lucidum, namely, FYGL, has been demonstrated to be capable of ameliorating insulin resistance in previous work. In this work, a T2D rat model induced by streptozocin (STZ) and a high-fat diet was used to investigate the effects of FYGL on pancreatic functions, and the transcriptomics of the rat pancreas was used to investigate the biological processes (BP) and signal pathways influenced by FYGL on the gene basis. Furthermore, the results of transcriptomics were verified both by histopathological analyses and protein expression. The studies showed that FYGL positively regulated T2D-related BP and signaling pathways and recovered the pancreatic function, therefore ameliorating hyperglycemia and hyperlipidemia in vivo. Importantly, the recovery of the pancreatic function suggested a crucial strategy to radically treat T2D.
Collapse
Affiliation(s)
- Fanzhen Yu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yilong Teng
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiaqi Li
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Shutong Yang
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Zeng Zhang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Yanming He
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Hongjie Yang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Chuan-Fan Ding
- Zhejiang
Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular
Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ping Zhou
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|