1
|
Wei Q, Pan H, Yang Y, Tan S, Zheng L, Wang H, Zhang J, Zhang Z, Wei Y, Wang X, Ma X, Xiong S. Effects of elevated atmospheric [CO 2] on grain starch characteristics in different specialized wheat. FRONTIERS IN PLANT SCIENCE 2024; 14:1334053. [PMID: 38304450 PMCID: PMC10830628 DOI: 10.3389/fpls.2023.1334053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
The increasing atmospheric [CO2] poses great challenges to wheat production. Currently, the response of starch characteristics in different specialized wheat cultivars to elevated [CO2], as well as the underlying physiological and molecular mechanisms remains unclear. Therefore, an experiment was conducted with open-top chambers to study the effects of ambient [CO2] [a(CO2)] and elevated [CO2] [e(CO2)] on photosynthetic performance, yield and starch characteristics of bread wheat (Zhengmai 369, ZM369) and biscuit wheat (Yangmai 15, YM15) from 2020 to 2022. The results demonstrated a significant improvement in photosynthetic performance, yield, amylose and amylopectin content, volume ratio of large granules under e[CO2]. Moreover, e[CO2] upregulated the gene expression and enzyme activities of GBSS (Granule-bound starch synthase) and SSS (Soluble starch synthase), increased starch pasting viscosity, gelatinization enthalpy and crystallinity. Compared to YM15, ZM369 exhibited a higher upregulation of GBSSI, greater increase in amylose content and volume ratio of large granules, as well as higher gelatinization enthalpy and crystallinity. However, ZM369 showed a lower increase in amylopectin content and a lower upregulation of SSSI and SSSII. Correlation analysis revealed amylose and amylopectin content had a positive correlation with GBSS and SSS, respectively, a significant positively correlation among the amylose and amylopectin content, starch granule volume, and pasting properties. In conclusion, these changes may enhance the utilization value of biscuit wheat but exhibit an opposite effect on bread wheat. The results provide a basis for selecting suitable wheat cultivars and ensuring food security under future climate change conditions.
Collapse
Affiliation(s)
- Qiongru Wei
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Huqiang Pan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yuxiu Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shichao Tan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Liang Zheng
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Huali Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jie Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiyong Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yihao Wei
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaochun Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuping Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|