1
|
Strashok O, Ziemiańska M, Czaplicka M, Strashok V. Pre-treatment of Cucurbita maxima 'Hokkaido orange' by Viscum album aqueous extracts in search of allelopathic potential. Sci Rep 2024; 14:14927. [PMID: 38942921 PMCID: PMC11213859 DOI: 10.1038/s41598-024-65918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Viscum album L. (VA) is a unique plant with regard to its biological content. It is rich in many different metabolites with high potential in various spheres of human activity. We conducted a pilot study with 5 VA aqueous extracts of different host-tree species for pre-sowing treatment of Cucurbita maxima 'Hokkaido orange' seeds. We set the following objectives consisting of hypotheses (1) H01 is based on different effects of tested VA extracts depending on host trees and time of pre-treatment; (2) H02 focuses on the allopathic properties of the tested extracts affecting the plant growth and development by dose-response relationship; (3) A01 considers highly biologically active compounds of VA extracts also containing allelochemicals that can be used to regulate plant growth processes and create eco-friendly and resilient cities. The analysis of the stimulatory allelopathy index for 7 parameters demonstrates the direct effect of VA extracts in 62.3% of cases. The variability of the broad spectrum of effects of VA extracts of different host trees on the ontogenesis of C. maxima plants shows the presence of potential allelochemicals, resulting from the vital products of the host-parasite relationship. These effects are not fully explained by total polyphenol content and antioxidant activity as in previous studies of other mistletoe species. The authors consider this work a pilot study that expands the areas of application of VA extracts and knowledge about potential sources of allelochemicals.
Collapse
Affiliation(s)
- Oleksandra Strashok
- Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine.
| | - Monika Ziemiańska
- Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Czaplicka
- Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Vitalii Strashok
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
2
|
Kim KD, Shim J, Hwang JH, Kim D, El Baidouri M, Park S, Song J, Yu Y, Lee K, Ahn BO, Hong SY, Chin JH. Chromosome-level genome assembly of milk thistle (Silybum marianum (L.) Gaertn.). Sci Data 2024; 11:342. [PMID: 38580686 PMCID: PMC10997770 DOI: 10.1038/s41597-024-03178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/22/2024] [Indexed: 04/07/2024] Open
Abstract
Silybum marianum (L.) Gaertn., commonly known as milk thistle, is a medicinal plant belonging to the Asteraceae family. This plant has been recognized for its medicinal properties for over 2,000 years. However, the genome of this plant remains largely undiscovered, having no reference genome at a chromosomal level. Here, we assembled the chromosome-level genome of S. marianum, allowing for the annotation of 53,552 genes and the identification of transposable elements comprising 58% of the genome. The genome assembly from this study showed 99.1% completeness as determined by BUSCO assessment, while the previous assembly (ASM154182v1) showed 36.7%. Functional annotation of the predicted genes showed 50,329 genes (94% of total genes) with known protein functions in public databases. Comparative genome analysis among Asteraceae plants revealed a striking conservation of collinearity between S. marianum and C. cardunculus. The genomic information generated from this study will be a valuable resource for milk thistle breeding and for use by the larger research community.
Collapse
Affiliation(s)
- Kyung Do Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Korea.
| | | | - Ji-Hun Hwang
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Daegwan Kim
- Department of Research and Development, DNACARE Co. Ltd., Seoul, 06126, Korea
| | - Moaine El Baidouri
- Laboratoire Génome et Développement des Plantes, Center National de la Recherche Scientifique (CNRS), Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, Perpignan, France
| | - Soyeon Park
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Jiyong Song
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Korea
- Department of Research and Development, DNACARE Co. Ltd., Seoul, 06126, Korea
| | - Yeisoo Yu
- Department of Research and Development, DNACARE Co. Ltd., Seoul, 06126, Korea
| | - Keunpyo Lee
- International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration, Jeonju, 54875, Korea
| | - Byoung-Ohg Ahn
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Korea
| | - Su Young Hong
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Korea.
| | - Joong Hyoun Chin
- Food Crops Molecular Breeding Laboratory, Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, 05006, Korea.
- Convergence Research Center for Natural Products, Sejong University, Seoul, 05006, Korea.
| |
Collapse
|