1
|
Krishankumar S, Hunter JJ, Alyafei M, Hamed F, Subramaniam S, Ramlal A, Kurup SS, Amiri KMA. Physiological, biochemical and elemental responses of grafted grapevines under drought stress: insights into tolerance mechanisms. BMC PLANT BIOLOGY 2025; 25:385. [PMID: 40133817 PMCID: PMC11938781 DOI: 10.1186/s12870-025-06374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
The selection of appropriate grapevine grafts and optimizing irrigation practices for enhancing water use efficiency are critical for viticulture production in the arid regions of UAE, apart from mitigating the effects of changing environmental conditions. Extremely high arid temperatures leading to depleted soil moisture status limit grape production in the country. In order to streamline the production, it is imperative to focus on specific objectives of screening drought-tolerant grafts utilizing several laboratory analytical tools and irrigation management. Five grapevine cultivar-rootstock combinations were evaluated in an open field experiment under induced drought conditions by regulating irrigation at 100%, 75% and 50% field capacity (FC) in an arid region. The net photosynthetic rate increased in Flame Seedless [Formula: see text] Ramsey (V1), Thompson Seedless [Formula: see text] Ramsey (V2), and Crimson Seedless [Formula: see text] R110 (V3) at 50% FC. Stomatal conductance was reduced in V1, V3, Crimson Seedless [Formula: see text] Ramsey (V4) and Thompson Seedless x P1103 (V5) at 50% FC. Intercellular CO2 and transpiration rates were significantly reduced at 50% FC. Water use efficiency, calculated as Pn/gs ratio to relate photosynthesis to stomatal closure, was elevated in all the grafts at 75% FC and 50% FC compared to the control (100% FC). The relative water content (RWC) showed a declining trend in all the grafts with reduced water supply. Nevertheless, the V1 and V4 grafts exhibited the highest RWC at an FC of 50%. The V2 graft produced the highest total dry mass and fresh biomass compared to other grafts. The Chl a content decreased, but the Chl b content increased at 50% FC in V2. Lutein significantly decreased for V1, while V3 showed an increase at 50% FC. The N, P and K contents in all the grafts, except V3, showed an increasing trend at 50% FC. The scanning electron microscopy observations point to the strong responses of stomatal behaviour upon changes in irrigation, thus facilitating the drought tolerance of the grafts. The findings emphasize the importance of selecting drought-tolerant grapevine grafts, and our study results could serve as guideposts for developing sustainable viticulture in arid regions, providing valuable insights for future research and practical applications in grape production.
Collapse
Affiliation(s)
- Sonu Krishankumar
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, UAE University (UAEU), Al Ain, UAE
| | - Jacobus J Hunter
- ARC Infruitec-Nietvoorbij, Agricultural Research Council, Stellenbosch, South Africa
| | - Mohammed Alyafei
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, UAE University (UAEU), Al Ain, UAE
| | - Fathalla Hamed
- Department of Physics, College of Science, UAE University (UAEU), Al Ain, UAE
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Penang, 11800, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia (USM), Bayan Lepas, Penang, 11900, Malaysia
| | - Ayyagari Ramlal
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Penang, 11800, Malaysia
| | - Shyam S Kurup
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, UAE University (UAEU), Al Ain, UAE.
| | - Khaled M A Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, UAE University (UAEU), Al Ain, UAE.
- Department of Biology, College of Science, UAE University (UAEU), Al Ain, UAE.
| |
Collapse
|
2
|
Malacarne G, Lagreze J, Rojas San Martin B, Malnoy M, Moretto M, Moser C, Dalla Costa L. Insights into the cell-wall dynamics in grapevine berries during ripening and in response to biotic and abiotic stresses. PLANT MOLECULAR BIOLOGY 2024; 114:38. [PMID: 38605193 PMCID: PMC11009762 DOI: 10.1007/s11103-024-01437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.
Collapse
Affiliation(s)
- Giulia Malacarne
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy.
| | - Jorge Lagreze
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, 38098, Trento, Italy
| | - Barbara Rojas San Martin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, 38098, Trento, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| |
Collapse
|
3
|
Zhu B, Guo P, Wu S, Yang Q, He F, Gao X, Zhang Y, Xiao J. A Better Fruit Quality of Grafted Blueberry Than Own-Rooted Blueberry Is Linked to Its Anatomy. PLANTS (BASEL, SWITZERLAND) 2024; 13:625. [PMID: 38475469 DOI: 10.3390/plants13050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
To further clarify the impact of different rootstocks in grafted blueberry, fruit quality, mineral contents, and leaf gas exchange were investigated in 'O'Neal' blueberry (Vaccinium corymbosum) grafted onto 'Anna' (V. corymbosum) (AO), 'Sharpblue' (V. corymbosum) (SO), 'Baldwin' (V. virgatum) (BO), 'Plolific' (V. virgatum) (PO), and 'Tifblue' (V. virgatum) (TO) rootstocks and own-rooted 'O'Neal' (NO), and differences in anatomic structures and drought resistance were determined in AO, TO, and NO. The findings revealed that fruit quality in TO and PO was excellent, that of BO and SO was good, and that of AO and NO was medium. 'Tifblue' and 'Plolific' rootstocks significantly increased the levels of leaf phosphorus and net photosynthetic rate of 'O'Neal', accompanied by a synchronous increase in their transpiration rates, stomatal conductance, and intercellular CO2. Additionally, the comprehensive evaluation scores from a principal component analysis based on anatomic structure traits from high to low were in the order TO > AO > NO. The P50 (xylem water potential at 50% loss of hydraulic conductivity) values of these grafted plants descended in the order NO > AO > TO, and the branch hydraulic conductivity of TO and sapwood hydraulic conductivity of TO and AO were significantly lower than those of NO. Thus, TO plants exhibited the strongest drought resistance, followed by AO, and NO, and this trait was related to the effects of different rootstocks on the fruit quality of 'O'Neal' blueberry. These results provided a basis for a deeper understanding of the interaction between rootstocks and scions, as well mechanisms to improve blueberry fruit quality.
Collapse
Affiliation(s)
- Bo Zhu
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Peipei Guo
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shuangshuang Wu
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Qingjing Yang
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Feng He
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xuan Gao
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ya Zhang
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jiaxin Xiao
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
4
|
Lukšić K, Mucalo A, Smolko A, Brkljačić L, Marinov L, Hančević K, Ozretić Zoković M, Bubola M, Maletić E, Karoglan Kontić J, Karoglan M, Salopek-Sondi B, Zdunić G. Biochemical Response and Gene Expression to Water Deficit of Croatian Grapevine Cultivars ( Vitis vinifera L.) and a Specimen of Vitis sylvestris. PLANTS (BASEL, SWITZERLAND) 2023; 12:3420. [PMID: 37836160 PMCID: PMC10575188 DOI: 10.3390/plants12193420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The biochemical response and gene expression in different grapevine cultivars to water deficit are still not well understood. In this study, we investigated the performance of four traditional Croatian Vitis vinifera L. cultivars ('Plavac mali crni', 'Istrian Malvasia', 'Graševina', and 'Tribidrag'), and one wild (Vitis vinifera subsp. sylvestris) genotype exposed to water deficit (WD) for nine days under semi-controlled conditions in the greenhouse. Sampling for biochemical and gene expression analyses was performed at days six and nine from the beginning of WD treatment. The WD affected the accumulation of metabolites with a significant increase in abscisic acid (ABA), salicylic acid (SA), and proline in the leaves of the stressed genotypes when the WD continued for nine days. Lipid peroxidation (MDA) was not significantly different from that of the control plants after six days of WD, whereas it was significantly lower (297.40 nmol/g dw) in the stressed plants after nine days. The cultivar 'Istrian Malvasia' responded rapidly to the WD and showed the highest and earliest increase in ABA levels (1.16 ng mg-1 dw, i.e., 3.4-fold increase compared to control). 'Graševina' differed significantly from the other genotypes in SA content at both time points analyzed (six and nine days, 47.26 and 49.63 ng mg-1 dw, respectively). Proline level increased significantly under WD (up to 5-fold at day nine), and proline variation was not genotype driven. The expression of aquaporin genes (TIP2;1 and PIP2;1) was down-regulated in all genotypes, coinciding with the accumulation of ABA. The gene NCED1 (9-cis-epoxycarotenoid dioxygenase) related to ABA was up-regulated in all genotypes under stress conditions and served as a reliable marker of drought stress. This work suggests that the stress response in metabolite synthesis and accumulation is complex, treatment- and genotype-dependent.
Collapse
Affiliation(s)
- Katarina Lukšić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia; (K.L.); (A.M.); (L.M.); (K.H.); (M.O.Z.)
| | - Ana Mucalo
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia; (K.L.); (A.M.); (L.M.); (K.H.); (M.O.Z.)
| | - Ana Smolko
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (A.S.); (L.B.); (B.S.-S.)
| | - Lidija Brkljačić
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (A.S.); (L.B.); (B.S.-S.)
| | - Luka Marinov
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia; (K.L.); (A.M.); (L.M.); (K.H.); (M.O.Z.)
| | - Katarina Hančević
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia; (K.L.); (A.M.); (L.M.); (K.H.); (M.O.Z.)
| | - Maja Ozretić Zoković
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia; (K.L.); (A.M.); (L.M.); (K.H.); (M.O.Z.)
| | - Marijan Bubola
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia;
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (E.M.); (J.K.K.); (M.K.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (E.M.); (J.K.K.); (M.K.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Marko Karoglan
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (E.M.); (J.K.K.); (M.K.)
| | - Branka Salopek-Sondi
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (A.S.); (L.B.); (B.S.-S.)
| | - Goran Zdunić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia; (K.L.); (A.M.); (L.M.); (K.H.); (M.O.Z.)
| |
Collapse
|
5
|
Lin Y, Liu S, Fang X, Ren Y, You Z, Xia J, Hakeem A, Yang Y, Wang L, Fang J, Shangguan L. The physiology of drought stress in two grapevine cultivars: Photosynthesis, antioxidant system, and osmotic regulation responses. PHYSIOLOGIA PLANTARUM 2023; 175:e14005. [PMID: 37882275 DOI: 10.1111/ppl.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023]
Abstract
Drought stress impedes viticultural plant growth and development by modifying various metabolic pathways. However, the regulatory network response underlying drought stress is not yet clear. In this study, the leaves and roots of "Shine Muscat" ("SM," Vitis labruscana × Vitis vinifera) and "Thompson Seedless" ("TS," V. vinifera L. cv.) were subjected to drought stress to study the regulatory network used by drought stress. Morphophysiological results showed that the malondialdehyde content after 28 days of drought stress increased more significantly in "TS" than "SM." Furthermore, the multiomics analysis studies showed that a total of 3036-6714 differentially expressed genes and 379-385 differentially abundant metabolites were identified in "SM" and "TS" grapevine cultivars under drought stress. Furthermore, the retained intron was the major form of differential alternative splicing event under drought stress. The photosynthesis pathway, antioxidant system, plant hormone signal transduction, and osmotic adjustment were the primary response systems in the two grapevine cultivars under drought stress. We have identified GRIK1, RFS2, and LKR/SDH as the hub genes in the coexpression network of drought stress. In addition, the difference in the accumulation of pheophorbide-a reveals different drought resistance mechanisms in the two grapevine cultivars. Our study explained the difference in drought response between cultivars and tissues and identified drought stress-responsive genes, which provides reference data for further understanding the regulatory network of drought tolerance in grapevine.
Collapse
Affiliation(s)
- YiLing Lin
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Siyu Liu
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Xiang Fang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
- Agriculture and Horticulture Department, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Yanhua Ren
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Zhijie You
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Jiaxin Xia
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Abdul Hakeem
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Yuxian Yang
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Lingyu Wang
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Jinggui Fang
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Lingfei Shangguan
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| |
Collapse
|