1
|
da Silva TFO, Ferrarezi AA, da Silva Santos É, Ribeiro STC, de Oliveira AJB, Gonçalves RAC. Bioactivities and biotechnological tools for obtaining bioactive metabolites from Stevia rebaudiana. Food Sci Biotechnol 2025; 34:1679-1697. [PMID: 40151612 PMCID: PMC11936867 DOI: 10.1007/s10068-024-01776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 03/29/2025] Open
Abstract
Several natural compounds have already been isolated from the leaves of the Stevia rebaudiana, the main ones are stevioside and rebaudiosides, which are used commercially in the food and pharmaceutical industries because they are considered a low-calorie alternative for sweetening. Thus, the development of different strategies to increase the production of steviol glycosides, as well as the health benefits of these compounds with a sweet characteristic, are well-documented in the literature. However, there is a limited number of published works on the other bioactive metabolites present in S. rebaudiana. The objective of this review is to report the main basal and specialized metabolites present in the plant, their biological activities, and the different biotechnological tools used to obtain these metabolites from S. rebaudiana. The use of new natural sources of bioactive compounds with functional properties, such as S. rebaudiana, is highly relevant to the food and pharmaceutical industries. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01776-w.
Collapse
Affiliation(s)
- Thaila Fernanda Oliveira da Silva
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Arthur Antunes Ferrarezi
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Éverton da Silva Santos
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Susana Tavares Cotrim Ribeiro
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Arildo José Braz de Oliveira
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Regina Aparecida Correia Gonçalves
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| |
Collapse
|
2
|
Sharma K, Verma R, Kumar D, Kumar V. Impact of Irpex lenis and Schizophyllum commune endophytic fungi on Perilla frutescens: enhancing nutritional uptake, phytochemicals, and antioxidant potential. Microb Cell Fact 2024; 23:226. [PMID: 39127680 DOI: 10.1186/s12934-024-02491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Endophytic fungi (EF) reside within plants without causing harm and provide benefits such as enhancing nutrients and producing bioactive compounds, which improve the medicinal properties of host plants. Selecting plants with established medicinal properties for studying EF is important, as it allows a deeper understanding of their influence. Therefore, the study aimed to investigate the impact of EF after inoculating the medicinal plant Perilla frutescens, specifically focusing on their role in enhancing medicinal properties. RESULTS In the current study, the impact of two EF i.e., Irpex lenis and Schizophyllum commune isolated from A. bracteosa was observed on plant Perilla frutescens leaves after inoculation. Plants were divided into four groups i.e., group A: the control group, group B: inoculated with I. lenis; group C: inoculated with S. commune and group D: inoculated with both the EF. Inoculation impact of I. lenis showed an increase in the concentration of chlorophyll a (5.32 mg/g), chlorophyll b (4.46 mg/g), total chlorophyll content (9.78 mg/g), protein (68.517 ± 0.77 mg/g), carbohydrates (137.886 ± 13.71 mg/g), and crude fiber (3.333 ± 0.37%). Furthermore, the plants inoculated with I. lenis showed the highest concentrations of P (14605 mg/kg), Mg (4964.320 mg/kg), Ca (27389.400 mg/kg), and Mn (86.883 mg/kg). The results of the phytochemical analysis also indicated an increased content of total flavonoids (2.347 mg/g), phenols (3.086 mg/g), tannins (3.902 mg/g), and alkaloids (1.037 mg/g) in the leaf extract of P. frutescens inoculated with I. lenis. Thus, overall the best results of inoculation were observed in Group B i.e. inoculated with I. lenis. GC-MS analysis of methanol leaf extract showed ten bioactive constituents, including 9-Octadecenoic acid (Z)-, methyl ester, and hexadecanoic acid, methyl ester as major constituents found in all the groups of P. frutescens leaves. The phenol (gallic acid) and flavonoids (rutin, kaempferol, and quercetin) were also observed to increase after inoculation by HPTLC analysis. The enhancement in the phytochemical content was co-related with improved anti-oxidant potential which was analyzed by DPPH (% Inhibition: 83.45 µg/ml) and FRAP (2.980 µM Fe (II) equivalent) assay as compared with the control group. CONCLUSION Inoculation with I. lenis significantly enhances the uptake of nutritional constituents, phytochemicals, and antioxidant properties in P. frutescens, suggesting its potential to boost the therapeutic properties of host plants.
Collapse
Affiliation(s)
- Kiran Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
- Department of Chemsitry, Faculty of Science, University of Hradek Kralove, Rokitanskeho 62, 500 03 Hradec Kralove , Czech Republic.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK430AL, UK.
| |
Collapse
|
3
|
Papaefthimiou M, Kontou PI, Bagos PG, Braliou GG. Integration of Antioxidant Activity Assays Data of Stevia Leaf Extracts: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2024; 13:692. [PMID: 38929131 PMCID: PMC11201069 DOI: 10.3390/antiox13060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Stevia rebaudiana Bertoni, a no-calorie natural sweetener, contains a plethora of polyphenols that exert antioxidant properties with potential medicinal significance. Due to the variety of functional groups, polyphenols exhibit varying solubility depending on the nature of the extraction solvents (water, organic, or their mixtures, defined further on as hydroalcoholic extracts). In the present study, we performed a systematic review, following PRISMA guidelines, and meta-analysis, synthesizing all available data from 45 articles encompassing 250 different studies. Our results showed that the total phenolic content (TPC) of hydroalcoholic and aqueous extracts presents higher values (64.77 and 63.73 mg GAE/g) compared to organic extracts (33.39). Total flavonoid content (TFC) was also higher in aqueous and hydroalcoholic extracts; meta-regression analysis revealed that outcomes in different measuring units (mg QE/g, mg CE/g, and mg RUE/g) do not present statistically significant differences and can be synthesized in meta-analysis. Using meta-regression analysis, we showed that outcomes from the chemical-based ABTS, FRAP, and ORAC antioxidant assays for the same extract type can be combined in meta-analysis because they do not differ statistically significantly. Meta-analysis of ABTS, FRAP, and ORAC assays outcomes revealed that the antioxidant activity profile of various extract types follows that of their phenolic and flavonoid content. Using regression meta-analysis, we also presented that outcomes from SOD, CAT, and POX enzymatic antioxidant assays are independent of the assay type (p-value = 0.905) and can be combined. Our study constitutes the first effort to quantitatively and statistically synthesize the research results of individual studies using all methods measuring the antioxidant activity of stevia leaf extracts. Our results, in light of evidence-based practice, uncover the need for a broadly accepted, unified, methodological strategy to perform antioxidant tests, and offer documentation that the use of ethanol:water 1:1 mixtures or pure water can more efficiently extract stevia antioxidant compounds.
Collapse
Affiliation(s)
- Maria Papaefthimiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (M.P.); (P.G.B.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (M.P.); (P.G.B.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (M.P.); (P.G.B.)
| |
Collapse
|
4
|
Deepa N, Chauhan S, Singh A. Unraveling the functional characteristics of endophytic bacterial diversity for plant growth promotion and enhanced secondary metabolite production in Pelargonium graveolens. Microbiol Res 2024; 283:127673. [PMID: 38484575 DOI: 10.1016/j.micres.2024.127673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/17/2024]
Abstract
The rich diversity of microbial endophytic communities associated with plants, often referred to as the second genome, serves as a compelling illustration of efficient co-evolution. This noteworthy partnership plays a pivotal role in sustaining plant well-being and enhancing plant adaptability across diverse habitats. Therefore, examining the diversity of endophytic microbes associated with their particular host plant is valuable for gaining insights into the vast spectrum of plant-microbe interactions. The present experiments aimed at investigating the bacterial endophytic diversity in both root and shoot tissues of Pelargonium graveolens, employing culture dependent and culture independent high-throughput metagenomics approach. A total of 614 and 620 operational taxonomic units (OTUs), encompassing 291 and 229 genera, were identified in the shoot and root tissues of P. graveolens, respectively. Furthermore, the subsequent classification of OTUs revealed 15 highly abundant phyla, with Proteobacteria dominating both root and shoot tissues. Notably, an exceptionally high abundance of Firmicutes phyla was observed in the shoot compared to the root. Additionally, 30 bacterial endophytes from the root, stem, petiole, and leaves were isolated and molecularly characterized, unveiling a consistent pattern of diversity distribution between the root and shoot of P. graveolens. Upon screening all isolates for plant growth promoting traits, Pseudomonas oryzihabitans was found to be positive for major biochemical test like nitrogen fixation, phosphate solubilization etc. and on inoculation resulted in about two-fold increase in content of essential oil accompanied by a significant rise in the geraniol and citronellol content. Diving deep into the genetic constitution of P. oryzihabitans unveiled a substantial number of genes directly and indirectly contributing to the endophyte's capability in colonizing host plants effectively. In summary, data obtained from metagenomics and culture dependent approaches including glass house trials suggest potential bacterial endophytes suitable for field applications for yield enhancement and in planta secondary metabolite enhancement investigations.
Collapse
Affiliation(s)
- Nikky Deepa
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivam Chauhan
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Akanksha Singh
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
5
|
Toppo P, Kagatay LL, Gurung A, Singla P, Chakraborty R, Roy S, Mathur P. Endophytic fungi mediates production of bioactive secondary metabolites via modulation of genes involved in key metabolic pathways and their contribution in different biotechnological sector. 3 Biotech 2023; 13:191. [PMID: 37197561 PMCID: PMC10183385 DOI: 10.1007/s13205-023-03605-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Endophytic fungi stimulate the production of an enormous number of bioactive metabolites in medicinal plants and affect the different steps of biosynthetic pathways of these secondary metabolites. Endophytic fungi possess a number of biosynthetic gene clusters that possess genes for various enzymes, transcription factors, etc., in their genome responsible for the production of secondary metabolites. Additionally, endophytic fungi also modulate the expression of various genes responsible for the synthesis of key enzymes involved in metabolic pathways of such as HMGR, DXR, etc. involved in the production of a large number of phenolic compounds as well as regulate the expression of genes involved in the production of alkaloids and terpenoids in different plants. This review aims to provide a comprehensive overview of gene expression related to endophytes and their impact on metabolic pathways. Additionally, this review will emphasize the studies done to isolate these secondary metabolites from endophytic fungi in large quantities and assess their bioactivity. Due to ease in synthesis of secondary metabolites and their huge application in the medical industry, these bioactive metabolites are now being extracted from strains of these endophytic fungi commercially. Apart from their application in the pharmaceutical industry, most of these metabolites extracted from endophytic fungi also possess plant growth-promoting ability, bioremediation potential, novel bio control agents, sources of anti-oxidants, etc. The review will comprehensively shed a light on the biotechnological application of these fungal metabolites at the industrial level.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Lahasang Lamu Kagatay
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Ankita Gurung
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Priyanka Singla
- Department of Botany, Mount Carmel College, Bengaluru, Karnataka India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Dist. Darjeeling, Siliguri, West Bengal India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| |
Collapse
|
6
|
Lavado RS, Chiocchio VM. Symbiosis of Plants with Mycorrhizal and Endophytic Fungi. PLANTS (BASEL, SWITZERLAND) 2023; 12:1688. [PMID: 37111911 PMCID: PMC10144990 DOI: 10.3390/plants12081688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
It has long been known that plants and microorganisms coexist [...].
Collapse
|