1
|
Yu H, Xia L, Zhu J, Xie X, Wei Y, Li X, He X, Luo C. Genome-wide analysis of the MADS-box gene family in mango and ectopic expression of MiMADS77 in Arabidopsis results in early flowering. Gene 2025; 935:149054. [PMID: 39490648 DOI: 10.1016/j.gene.2024.149054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/10/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Mango (Mangifera indica L.) is an important tropical fruit, and timely flowering and fruit setting are very important for mango production. The MADS-box gene family is involved in the regulation of flower induction, floral organ specification, and fruit development in plants. The identification and analysis of the MADS-box gene family can lay a foundation for the study of the molecular mechanism of flowering and fruit development in mango. In this study, 119 MiMADS-box genes were identified on the basis of genome and transcriptome data. Phylogenetic analysis revealed that these genes can be divided into two classes. Forty-one type I proteins were further divided into three subfamilies, and seventy-eight type II proteins were further classified into eleven subfamilies. Several pairs of alternative splicing genes were found, especially in the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) subfamily. The MiMADS-box genes were distributed on 18 out of the 20 mango chromosomes. Cis-element analysis revealed many light-, stress-, and hormone-responsive elements in the promoter regions of the mango MiMADS-box genes. Expression pattern analysis revealed that these genes were differentially expressed in multiple tissues in mango. The highly expressed MiMADS77 was subsequently transformed into Arabidopsis, resulting in significant early flowering and abnormal floral organs. Yeast two-hybrid (Y2H) assays revealed that MiMADS77 interacts with several MiMADS-box proteins. In addition, we constructed a preliminary flowering regulatory network of MADS-box genes in mango on the basis of related studies. These results suggest that MiMADS77 genes may be involved in flowering regulation of mango.
Collapse
Affiliation(s)
- Haixia Yu
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Liming Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Jiawei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Xiaojie Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Ying Wei
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Xi Li
- Guangxi Key Laboratory of Biology for Mango, Baise University, Baise 533000, Guangxi, China
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Key Laboratory of Biology for Mango, Baise University, Baise 533000, Guangxi, China.
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Key Laboratory of Biology for Mango, Baise University, Baise 533000, Guangxi, China.
| |
Collapse
|
2
|
Ma Y, Lan Y, Li J, Long H, Zhou Y, Li Z, Miao M, Zhong J, Wang H, Chang W, Xu Z, Yang L. Characterization of MADS-Box Gene Family in Isatis indigotica and Functional Study of IiAP1 in Regulating Floral Transition and Formation. PLANTS (BASEL, SWITZERLAND) 2025; 14:129. [PMID: 39795389 PMCID: PMC11723362 DOI: 10.3390/plants14010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
In flowering plants, MADS-box genes play regulatory roles in flower induction, floral initiation, and floral morphogenesis. Isatis indigotica (I. indigotica) is a traditional Chinese medicinal plant. However, available information concerning MADS-box genes in I. indigotica is insufficient. Based on the sequencing data of the I. indigotica transcriptome, we identified MADS-box gene-encoding transcription factors that have been shown to play critical roles in developmental processes. In this study, 102 I. indigotica MADS-box genes were identified and categorized into type I (Mα, Mβ, and Mγ) and type II (MIKCC and MIKC*) subfamilies. IiMADS proteins in the same cluster had similar motifs and gene structures. In total, 102 IiMADS-box genes were unevenly distributed across seven chromosomes. APETALA1 (AP1) encodes a MADS-box transcription factor which plays a pivotal role in determining floral meristem identity and also modulates developmental processes within the perianth. We then selected IiAP1 for functional studies and found that it is localized to the nucleus and highly expressed in inflorescence, sepals, and petals. The ectopic expression of IiAP1 in Arabidopsis resulted in early flowering and abnormal development of floral organs. Taken together, this research study carried out a systematic identification of MADS-box genes in I. indigotica and demonstrated that IiAP1 takes part in the regulation of floral transition and formation.
Collapse
Affiliation(s)
- Yanqin Ma
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology, College of Life Sciences Northwest University, Xi’an 710069, China;
| | - Yanhong Lan
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Ju Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Haicheng Long
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Yujie Zhou
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Zhi Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Mingjun Miao
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Jian Zhong
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Haie Wang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Wei Chang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China;
| | - Ziqin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology, College of Life Sciences Northwest University, Xi’an 710069, China;
| | - Liang Yang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| |
Collapse
|
3
|
Zhang X, He W, Wang X, Duan Y, Li Y, Wang Y, Jiang Q, Liao B, Zhou S, Li Y. Genome-Wide Analyses of MADS-Box Genes Reveal Their Involvement in Seed Development and Oil Accumulation of Tea-Oil Tree ( Camellia oleifera). Int J Genomics 2024; 2024:3375173. [PMID: 39105136 PMCID: PMC11300058 DOI: 10.1155/2024/3375173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
The seeds of Camellia oleifera produce high amount of oil, which can be broadly used in the fields of food, industry, and medicine. However, the molecular regulation mechanisms of seed development and oil accumulation in C. oleifera are unclear. In this study, evolutionary and expression analyses of the MADS-box gene family were performed across the C. oleifera genome for the first time. A total of 86 MADS-box genes (ColMADS) were identified, including 60 M-type and 26 MIKC members. More gene duplication events occurred in M-type subfamily (6) than that in MIKC subfamily (2), and SEP-like genes were lost from the MIKCC clade. Furthermore, 8, 15, and 17 differentially expressed ColMADS genes (DEGs) were detected between three developmental stages of seed (S1/S2, S2/S3, and S1/S3), respectively. Among these DEGs, the STK-like ColMADS12 and TT16-like ColMADS17 were highly expressed during the seed formation (S1 and S2), agreeing with their predicted functions to positively regulate the seed organogenesis and oil accumulation. While ColMADS57 and ColMADS07 showed increasing expression level with the seed maturation (S2 and S3), conforming to their potential roles in promoting the seed ripening. In all, these results revealed a critical role of MADS-box genes in the C. oleifera seed development and oil accumulation, which will contribute to the future molecular breeding of C. oleifera.
Collapse
Affiliation(s)
- Xianzhi Zhang
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Heyuan Branch CenterGuangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517500, China
| | - Wenliang He
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xinyi Wang
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongliang Duan
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongjuan Li
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yi Wang
- School of Mechanic and Electronic EngineeringZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qingbin Jiang
- Research Institute of Tropical ForestryChinese Academy of Forestry, Guangzhou 510520, China
| | - Boyong Liao
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Sheng Zhou
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongquan Li
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
4
|
Zhang SL, Wu Y, Zhang XH, Feng X, Wu HL, Zhou BJ, Zhang YQ, Cao M, Hou ZX. Characterization of the MIKC C-type MADS-box gene family in blueberry and its possible mechanism for regulating flowering in response to the chilling requirement. PLANTA 2024; 259:77. [PMID: 38421445 DOI: 10.1007/s00425-024-04349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
MAIN CONCLUSION The expression peak of VcAP1.4, VcAP1.6, VcAP3.1, VcAP3.2, VcAG3, VcFLC2, and VcSVP9 coincided with the endo-dormancy release of flower buds. Additionally, GA4+7 not only increased the expression of these genes but also promoted flower bud endo-dormancy release. The MIKCC-type MADS-box gene family is involved in the regulation of flower development. A total of 109 members of the MIKCC-type MADS-box gene family were identified in blueberry. According to the phylogenetic tree, these 109 MIKCC-type MADS-box proteins were divided into 13 subfamilies, which were distributed across 40 Scaffolds. The results of the conserved motif analysis showed that among 20 motifs, motifs 1, 3, and 9 formed the MADS-box structural domain, while motifs 2, 4, and 6 formed the K-box structural domain. The presence of 66 pairs of fragment duplication events in blueberry suggested that gene duplication events contributed to gene expansion and functional differentiation. Additionally, the presence of cis-acting elements revealed that VcFLC2, VcAG3, and VcSVP9 might have significant roles in the endo-dormancy release of flower buds. Meanwhile, under chilling conditions, VcAP3.1 and VcAG7 might facilitate flower bud dormancy release. VcSEP11 might promote flowering following the release of endo-dormancy, while the elevated expression of VcAP1.7 (DAM) could impede the endo-dormancy release of flower buds. The effect of gibberellin (GA4+7) treatment on the expression pattern of MIKCC-type MADS-box genes revealed that VcAP1.4, VcAP1.6, VcAP3.1, VcAG3, and VcFLC2 might promote flower bud endo-dormancy release, while VcAP3.2, VcSEP11, and VcSVP9 might inhibit its endo-dormancy release. These results indicated that VcAP1.4, VcAP1.6, VcAP1.7 (DAM), VcAP3.1, VcAG3, VcAG7, VcFLC2, and VcSVP9 could be selected as key regulatory promoting genes for controlling the endo-dormancy of blueberry flower buds.
Collapse
Affiliation(s)
- Sui-Lin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Yan Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Xiao-Han Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Xin Feng
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Hui-Ling Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Bing-Jie Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Ya-Qian Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Man Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Zhi-Xia Hou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China.
| |
Collapse
|
5
|
Dai Y, Wang Y, Zeng L, Jia R, He L, Huang X, Zhao H, Liu D, Zhao H, Hu S, Gao L, Guo A, Xia W, Ji C. Genomic and Transcriptomic Insights into the Evolution and Divergence of MIKC-Type MADS-Box Genes in Carica papaya. Int J Mol Sci 2023; 24:14039. [PMID: 37762345 PMCID: PMC10531014 DOI: 10.3390/ijms241814039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
MIKC-type MADS-box genes, also known as type II genes, play a crucial role in regulating the formation of floral organs and reproductive development in plants. However, the genome-wide identification and characterization of type II genes as well as a transcriptomic survey of their potential roles in Carica papaya remain unresolved. Here, we identified and characterized 24 type II genes in the C. papaya genome, and investigated their evolutional scenario and potential roles with a widespread expression profile. The type II genes were divided into thirteen subclades, and gene loss events likely occurred in papaya, as evidenced by the contracted member size of most subclades. Gene duplication mainly contributed to MIKC-type gene formation in papaya, and the duplicated gene pairs displayed prevalent expression divergence, implying the evolutionary significance of gene duplication in shaping the diversity of type II genes in papaya. A large-scale transcriptome analysis of 152 samples indicated that different subclasses of these genes showed distinct expression patterns in various tissues, biotic stress response, and abiotic stress response, reflecting their divergent functions. The hub-network of male and female flowers and qRT-PCR suggested that TT16-3 and AGL8 participated in male flower development and seed germination. Overall, this study provides valuable insights into the evolution and functions of MIKC-type genes in C. papaya.
Collapse
Affiliation(s)
- Yunsu Dai
- Sanya Nanfan Research Institution of Hainan University, Sanya 572025, China; (Y.D.); (Y.W.); (D.L.)
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.J.); (X.H.); (H.Z.); (H.Z.); (S.H.); (L.G.); (A.G.)
| | - Yu Wang
- Sanya Nanfan Research Institution of Hainan University, Sanya 572025, China; (Y.D.); (Y.W.); (D.L.)
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.J.); (X.H.); (H.Z.); (H.Z.); (S.H.); (L.G.); (A.G.)
- National Key Laboratory for Tropical Crop Breeding, Sanya 572025, China
| | - Liwang Zeng
- Key Laboratory of Applied Research on Tropical Crop Information Technology of Hainan Province, Institute of Scientific and Technical Information, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ruizong Jia
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.J.); (X.H.); (H.Z.); (H.Z.); (S.H.); (L.G.); (A.G.)
- National Key Laboratory for Tropical Crop Breeding, Sanya 572025, China
| | - Linwen He
- College of Marine Science, Hainan University, Haikou 570228, China;
| | - Xueying Huang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.J.); (X.H.); (H.Z.); (H.Z.); (S.H.); (L.G.); (A.G.)
- College of Marine Science, Hainan University, Haikou 570228, China;
| | - Hui Zhao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.J.); (X.H.); (H.Z.); (H.Z.); (S.H.); (L.G.); (A.G.)
- National Key Laboratory for Tropical Crop Breeding, Sanya 572025, China
| | - Difa Liu
- Sanya Nanfan Research Institution of Hainan University, Sanya 572025, China; (Y.D.); (Y.W.); (D.L.)
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haixu Zhao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.J.); (X.H.); (H.Z.); (H.Z.); (S.H.); (L.G.); (A.G.)
| | - Shuai Hu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.J.); (X.H.); (H.Z.); (H.Z.); (S.H.); (L.G.); (A.G.)
- National Key Laboratory for Tropical Crop Breeding, Sanya 572025, China
| | - Ling Gao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.J.); (X.H.); (H.Z.); (H.Z.); (S.H.); (L.G.); (A.G.)
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Anping Guo
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.J.); (X.H.); (H.Z.); (H.Z.); (S.H.); (L.G.); (A.G.)
- National Key Laboratory for Tropical Crop Breeding, Sanya 572025, China
| | - Wei Xia
- Sanya Nanfan Research Institution of Hainan University, Sanya 572025, China; (Y.D.); (Y.W.); (D.L.)
| | - Changmian Ji
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.J.); (X.H.); (H.Z.); (H.Z.); (S.H.); (L.G.); (A.G.)
- National Key Laboratory for Tropical Crop Breeding, Sanya 572025, China
| |
Collapse
|
6
|
Lin Y, Qi X, Wan Y, Chen Z, Fang H, Liang C. Genome-wide analysis of the MADS-box gene family in Lonicera japonica and a proposed floral organ identity model. BMC Genomics 2023; 24:447. [PMID: 37553575 PMCID: PMC10408238 DOI: 10.1186/s12864-023-09509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mβ, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.
Collapse
Affiliation(s)
- Yi Lin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yan Wan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zequn Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|