1
|
Na N, Wu Z, Wang Z, Yang Y, Tian C, Zhu L, Ou T, Chen X, Xia H, Li Z. The Complete Mitochondrial Genome of Thymus mongolicus and Its Phylogenetic Relationship with Lamiaceae Species. Biomolecules 2025; 15:343. [PMID: 40149879 PMCID: PMC11939870 DOI: 10.3390/biom15030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Thymus mongolicus (Lamiaceae) is a plant commonly found throughout China, in which it is widely used in chemical products for daily use, traditional medicinal preparations, ecological management, and cooking. In this study, we have assembled and annotated for the first time the entire mitochondrial genome (mitogenome) of T. mongolicus. The mitochondrial genome of T. mongolicus is composed in a monocyclic structure, with an overall size of 450,543 base pairs (bp) and a GC composition of 45.63%. It contains 32 unique protein-encoding genes. The repetitive sequences of the T. mongolicus mitogenome include 165 forward repetitive sequences and 200 palindromic repetitive sequences, in addition to 88 simple sequence repeats, of which tetramers accounted for the highest proportion (40.91%). An analysis of the mitogenome codons revealed that synonymous codons generally end with A/U. With the exception of nad4L, which uses ACG/ATG as an initiation codon, all other genes begin with the ATG start codon. Codon analysis of the mitogenome also showed that leucine (909) are the most abundant amino acid, while tryptophan (134) are the least prevalent. In total, 374 RNA editing sites were detected. Moreover, 180 homologous segments totaling 105,901 bp were found when the mitochondrial and chloroplast genomes of T. mongolicus were compared. Phylogenetic analysis further indicated that T. mongolicus is most closely related to Prunella vulgaris in the Lamiaceae family. Our findings offer important genetic insights for further research on this Lamiaceae species. To the best of our knowledge, this study is the first description of the entire mitogenome of T. mongolicus.
Collapse
Affiliation(s)
- Na Na
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010011, China; (N.N.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010018, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010011, China; (N.N.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010018, China
| | - Zhiyong Wang
- Inner Mongolia General Station of Seed and Seedling of Forestry and Grassland, Hohhot 010021, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010011, China; (N.N.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010018, China
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010011, China; (N.N.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010018, China
| | - Lin Zhu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010011, China; (N.N.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010018, China
| | - Taiyou Ou
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010011, China; (N.N.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010018, China
| | - Xiaofei Chen
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010011, China; (N.N.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010018, China
| | - Hongyan Xia
- Inner Mongolia General Station of Seed and Seedling of Forestry and Grassland, Hohhot 010021, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010011, China; (N.N.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010018, China
| |
Collapse
|
2
|
Abbas M, Shabbir MA, Haq SMAU, Wahab HA, Hassan SA, Adeeba F, Ali A, Asif M, Nasir A, Mousavi Khaneghah A, Aadil RM. Harnessing the potential of bitter gourd seeds for food and nutrition- A comprehensive review. APPLIED FOOD RESEARCH 2024; 4:100508. [DOI: 10.1016/j.afres.2024.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Chen Y, Wang W, Zhang S, Zhao Y, Feng L, Zhu C. Assembly and analysis of the complete mitochondrial genome of Carya illinoinensis to provide insights into the conserved sequences of tRNA genes. Sci Rep 2024; 14:28571. [PMID: 39562577 PMCID: PMC11576845 DOI: 10.1038/s41598-024-75324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/04/2024] [Indexed: 11/21/2024] Open
Abstract
Carya illinoinensis is an economically important nut tree, and its chloroplast (cp.) genome has been reported; however, its mitochondrial (mt) genome remains unknown. In the present study, we assembled the first mt genome of C. illinoinensis. The circular mt genome of C. illinoinensis is 495,205 bp long, with 37 protein-coding genes(PCGs), 24 tRNA genes, and 3 rRNA genes. All the tRNAs could be folded into typical cloverleaf secondary structures, with lengths of 58-88 bp. A conserved U-U-C-x-A-x2 consensus nucleotide sequence was discovered in the Ψ-loops of tRNA sequences. In addition, 447 dispersed repeats were detected, as well as found 482 RNA editing sites and 9,960 codons in the mt genome. Furthermore, a total of 27 DNA sequences with a length of 43,277 bp were transferred from the cp. to the mt genome, and eight integrated cp-derived genes (trnL-CAA, trnV-GAC, trnD-GUC, trnW-CCA, trnN-GUU, trnH-GUG, trnM-CAU, and rps7) were identified. We also obtained 1,086 hits, including 364.023 kp of nuclear genome sequences, that were transferred to the mt genome. To determine the evolutionary position of C. illinoinensis, we conducted a phylogenetic analysis of the mitogenomes of C. illinoinensis and 14 other taxa. The results strongly suggested that C. illinoinensis and Fagus sylvatica formed a single clade with 100% bootstrap support. This study sequenced comprehensive data on the C. illinoinensis mitochondrial genome and provided insights into the conserved sequences of tRNA genes, which could facilitate evolutionary research in other Carya trees in the future.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Wu Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Shijie Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Liuchun Feng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Cancan Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| |
Collapse
|
4
|
Zhang M, Zhang X, Huang Y, Chen Z, Chen B. Comparative mitochondrial genomics of Terniopsis yongtaiensis in Malpighiales: structural, sequential, and phylogenetic perspectives. BMC Genomics 2024; 25:853. [PMID: 39267005 PMCID: PMC11391645 DOI: 10.1186/s12864-024-10765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Terniopsis yongtaiensis, a member of the Podostemaceae family, is an aquatic flowering plant displaying remarkable adaptive traits that enable survival in submerged, turbulent habitats. Despite the progressive expansion of chloroplast genomic information within this family, mitochondrial genome sequences have yet to be reported. RESULTS In current study, the mitochondrial genome of the T. yongtaiensis was characterized by a circular genome of 426,928 bp encoding 31 protein-coding genes (PCGs), 18 tRNAs, and 3 rRNA genes. Our comprehensive analysis focused on gene content, repeat sequences, RNA editing processes, intracellular gene transfer, phylogeny, and codon usage bias. Numerous repeat sequences were identified, including 130 simple sequence repeats, 22 tandem repeats, and 220 dispersed repeats. Phylogenetic analysis positioned T. yongtaiensis (Podostemaceae) within the Malpighiales order, showing a close relationship with the Calophyllaceae family, which was consistent with the APG IV classification. A comparative analysis with nine other Malpighiales species revealed both variable and conserved regions, providing insights into the genomic evolution within this order. Notably, the GC content of T. yongtaiensis was distinctively lower compared to other Malpighilales, primarily due to variations in non-coding regions and specific protein-coding genes, particularly the nad genes. Remarkably, the number of RNA editing sites was low (276), distributed unevenly across 27 PCGs. The dN/dS analysis showed only the ccmB gene of T. yongtaiensis was positively selected, which plays a crucial role in cytochrome c biosynthesis. Additionally, there were 13 gene-containing homologous regions between the mitochondrial and chloroplast genomes of T. yongtaiensis, suggesting the gene transfer events between these organellar genomes. CONCLUSIONS This study assembled and annotated the first mitochondrial genome of the Podostemaceae family. The comparison results of mitochondrial gene composition, GC content, and RNA editing sites provided novel insights into the adaptive traits and genetic reprogramming of this aquatic eudicot group and offered a foundation for future research on the genomic evolution and adaptive mechanisms of Podostemaceae and related plant families in the Malpighiales order.
Collapse
Affiliation(s)
- Miao Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xiaohui Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China
| | - Yinglin Huang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China
| | - Zhangxue Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China
| | - Binghua Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
5
|
Qin N, Yang S, Wang Y, Cheng H, Gao Y, Cheng X, Li S. The de novo assembly and characterization of the complete mitochondrial genome of bottle gourd ( Lagenaria siceraria) reveals the presence of homologous conformations produced by repeat-mediated recombination. FRONTIERS IN PLANT SCIENCE 2024; 15:1416913. [PMID: 39188545 PMCID: PMC11345175 DOI: 10.3389/fpls.2024.1416913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
Introduction Bottle gourd is an annual herbaceous plant that not only has high nutritional value and many medicinal applications but is also used as a rootstock for the grafting of cucurbit crops such as watermelon, cucumber and melon. Organellar genomes provide valuable resources for genetic breeding. Methods A hybrid strategy with Illumina and Oxford Nanopore Technology sequencing data was used to assemble bottle gourd mitochondrial and chloroplast genomes. Results The length of the bottle gourd mitochondrial genome was 357547 bp, and that of the chloroplast genome was 157121 bp. These genomes had 27 homologous fragments, accounting for 6.50% of the total length of the bottle gourd mitochondrial genome. In the mitochondrial genome, 101 simple sequence repeats (SSRs) and 10 tandem repeats were identified. Moreover, 1 pair of repeats was shown to mediate homologous recombination into 1 major conformation and 1 minor conformation. The existence of these conformations was verified via PCR amplification and Sanger sequencing. Evolutionary analysis revealed that the mitochondrial genome sequence of bottle gourd was highly conserved. Furthermore, collinearity analysis revealed many rearrangements between the homologous fragments of Cucurbita and its relatives. The Ka/Ks values for most genes were between 0.3~0.9, which means that most of the genes in the bottle gourd mitochondrial genome are under purifying selection. We also identified a total of 589 potential RNA editing sites on 38 mitochondrial protein-coding genes (PCGs) on the basis of long noncoding RNA (lncRNA)-seq data. The RNA editing sites of nad1-2, nad4L-2, atp6-718, atp9-223 and rps10-391 were successfully verified via PCR amplification and Sanger sequencing. Conclusion In conclusion, we assembled and annotated bottle gourd mitochondrial and chloroplast genomes to provide a theoretical basis for similar organelle genomic studies.
Collapse
Affiliation(s)
- Nannan Qin
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Department of Development Planning & Cooperation, Shanxi Agricultural University, Taiyuan, China
| | - Shanjie Yang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Yunan Wang
- Department of Scientific Research Management, Shanxi Agricultural University, Taiyuan, China
| | - Hui Cheng
- Department of Scientific Research Management, Shanxi Agricultural University, Taiyuan, China
| | - Yang Gao
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Xiaojing Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
6
|
Jiang Z, Chen Y, Zhang X, Meng F, Chen J, Cheng X. Assembly and evolutionary analysis of the complete mitochondrial genome of Trichosanthes kirilowii, a traditional Chinese medicinal plant. PeerJ 2024; 12:e17747. [PMID: 39035164 PMCID: PMC11260417 DOI: 10.7717/peerj.17747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Trichosanthes kirilowii (T. kirilowii) is a valuable plant used for both medicinal and edible purposes. It belongs to the Cucurbitaceae family. However, its phylogenetic position and relatives have been difficult to accurately determine due to the lack of mitochondrial genomic information. This limitation has been an obstacle to the potential applications of T. kirilowii in various fields. To address this issue, Illumina and Nanopore HiFi sequencing were used to assemble the mitogenome of T. kirilowii into two circular molecules with sizes of 245,700 bp and 107,049 bp, forming a unique multi-branched structure. The mitogenome contains 61 genes, including 38 protein-coding genes (PCGs), 20 tRNAs, and three rRNAs. Within the 38 PCGs of the T. kirilowii mitochondrial genome, 518 potential RNA editing sites were identified. The study also revealed the presence of 15 homologous fragments that span both the chloroplast and mitochondrial genomes. The phylogenetic analysis strongly supports that T. kirilowii belongs to the Cucurbitaceae family and is closely related to Luffa. Collinearity analysis of five Cucurbitaceae mitogenomes shows a high degree of structural variability. Interestingly, four genes, namely atp1, ccmFC, ccmFN, and matR, played significant roles in the evolution of T. kirilowii through selection pressure analysis. The comparative analysis of the T. kirilowii mitogenome not only sheds light on its functional and structural features but also provides essential information for genetic studies of the genus of Cucurbitaceae.
Collapse
Affiliation(s)
- Zhuanzhuan Jiang
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Yuhan Chen
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Xingyu Zhang
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Fansong Meng
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Jinli Chen
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Xu Cheng
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| |
Collapse
|
7
|
Gong Y, Luo X, Zhang T, Zhou G, Li J, Zhang B, Li P, Huang H. Assembly and comparative analysis of the complete mitochondrial genome of white towel gourd (Luffa cylindrica). Genomics 2024; 116:110859. [PMID: 38750703 DOI: 10.1016/j.ygeno.2024.110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Mitochondria play an important role in the energy production of plant cells through independent genetic systems. This study has aimed to assemble and annotate the functions of the mitochondrial (mt) genome of Luffa cylindrica. The mt genome of L. cylindrica contained two chromosomes with lengths of 380,879 bp and 67,982 bp, respectively. Seventy-seven genes including 39 protein-coding genes, 34 tRNA genes, 3 rRNA genes, and 1 pseudogene, were identified. About 90.63% of the codons ended with A or U bases, and 98.63% of monomers contained A/T, which contributed to the high A/T content (55.91%) of the complete mt genome. Six genes (ATP8, CCMFC, NAD4, RPL10, RPL5 and RPS4) showed positive selection. Phylogenetic analysis indicates that L. cylindrica is closely related to L. acutangula. The present results provide the mt genome of L. cylindrica, which may facilitate possible genetic variation, evolutionary, and molecular breeding studies of L. cylindrica.
Collapse
Affiliation(s)
- Yihui Gong
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China,.
| | - Xuan Luo
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Ting Zhang
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Guihua Zhou
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Jingyi Li
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Bin Zhang
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Peng Li
- Xiangtan Agricultural Science Research Institute, Xiangtan 411100, China
| | - Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical, Fruit Tree Research, Guangzhou 510640, China.
| |
Collapse
|
8
|
Cadorna CAE, Pahayo DG, Rey JD. The first mitochondrial genome of Calophyllum soulattri Burm.f. Sci Rep 2024; 14:5112. [PMID: 38429360 PMCID: PMC10907642 DOI: 10.1038/s41598-024-55016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
Calophyllum soulattri Burm.f. is traditionally used to treat skin infections and reduce rheumatic pain, yet genetic and genomic studies are still limited. Here, we present the first complete mitochondrial genome of C. soulattri. It is 378,262 bp long with 43.97% GC content, containing 55 genes (30 protein-coding, 5 rRNA, and 20 tRNA). Repeat analysis of the mitochondrial genome revealed 194 SSRs, mostly mononucleotides, and 266 pairs of dispersed repeats ( ≥ 30 bp) that were predominantly palindromic. There were 23 homologous fragments found between the mitochondrial and plastome genomes. We also predicted 345 C-to-U RNA editing sites from 30 protein-coding genes (PCGs) of the C. soulatrii mitochondrial genome. These RNA editing events created the start codon of nad1 and the stop codon of ccmFc. Most PCGs of the C. soulattri mitochondrial genome underwent negative selection, but atp4 and ccmB experienced positive selection. Phylogenetic analyses showed C. soulattri is a sister taxon of Garcinia mangostana. This study has shed light on C. soulattri's evolution and Malpighiales' phylogeny. As the first complete mitochondrial genome in Calophyllaceae, it can be used as a reference genome for other medicinal plant species within the family for future genetic studies.
Collapse
Affiliation(s)
- Charles Anthon E Cadorna
- Plant Molecular Phylogenetics Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Dexter G Pahayo
- Plant Molecular Phylogenetics Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Jessica D Rey
- Plant Molecular Phylogenetics Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, 1101, Quezon City, Philippines.
| |
Collapse
|
9
|
Liu Q, Wu Z, Tian C, Yang Y, Liu L, Feng Y, Li Z. Complete mitochondrial genome of the endangered Prunus pedunculata (Prunoideae, Rosaceae) in China: characterization and phylogenetic analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1266797. [PMID: 38155854 PMCID: PMC10753190 DOI: 10.3389/fpls.2023.1266797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Introduction Prunus pedunculata (Prunoideae: Rosaceae), a relic shrub with strong resistance and multiple application values, is endangered in China. Extensive research had been devoted to gene expression, molecular markers, plastid genome analysis, and genetic background investigations of P. pedunculata. However, the mitochondrial genome of this species has not been systematically described, owing to the complexity of the plant mitogenome. Methods In the present research, the complete mitochondrial genome of P. pedunculata was assembled, annotated, and characterized. The genomic features, gene content and repetitive sequences were analyzed. The genomic variation and phylogenetic analysis have been extensively enumerated. Results and discussion The P. pedunculata mitogenome is a circular molecule with a total length of 405,855 bp and a GC content of 45.63%, which are the smallest size and highest GC content among the known Prunus mitochondrial genomes. The mitogenome of P. pedunculata encodes 62 genes, including 34 unique protein-coding genes (PCGs, excluding three possible pseudogenes), three ribosomal RNA genes, and 19 transfer RNA genes. The mitogenome is rich in repetitive sequences, counting 112 simple sequence repeats, 15 tandem repeats, and 50 interspersed repetitive sequences, with a total repeat length of 11,793 bp, accounting for 2.91% of the complete genome. Leucine (Leu) was a predominant amino acid in PCGs, with a frequency of 10.67%, whereas cysteine (Cys) and tryptophan (Trp) were the least adopted. The most frequently used codon was UUU (Phe), with a relative synonymous codon usage (RSCU) value of 1.12. Selective pressure was calculated based on 20 shared PCGs in the mitogenomes of the 32 species, most of which were subjected to purifying selection (Ka/Ks < 1), whereas ccmC and ccmFn underwent positive selection. A total of 262 potential RNA editing sites in 26 PCGs were identified. Furthermore, 56 chloroplast-derived fragments were ascertained in the mitogenome, ranging from 30 to 858 bp, and were mainly located across IGS (intergenic spacer) regions or rRNA genes. These findings verify the occurrence of intracellular gene transfer events from the chloroplast to the mitochondria. Furthermore, the phylogenetic relationship of P. pedunculata was supported by the mitogenome data of 30 other taxa of the Rosaceae family. Understanding the mitochondrial genome characteristics of P. pedunculata is of great importance to promote comprehension of its genetic background and this study provides a basis for the genetic breeding of Prunus.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Lemeng Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yumei Feng
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| |
Collapse
|
10
|
Feng L, Wang Z, Wang C, Yang X, An M, Yin Y. Multichromosomal mitochondrial genome of Punica granatum: comparative evolutionary analysis and gene transformation from chloroplast genomes. BMC PLANT BIOLOGY 2023; 23:512. [PMID: 37880586 PMCID: PMC10598957 DOI: 10.1186/s12870-023-04538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Punica granatum is a fundamentally important fruit tree that has important economic, medicinal and ornamental properties. At present, there are few reports on the mitochondrial genome of pomegranate. Hence, in this study the P. granatum mitogenome was sequenced and assembled to further understanding of organization, variation, and evolution of mitogenomes of this tree species. RESULTS The genome structure was multi-chromosomes with seven circular contigs, measuring 382,774 bp in length with a 45.91% GC content. It contained 74 genes, including 46 protein-coding genes, 25 tRNA genes, and three rRNA genes. There were 188 pairs of dispersed repeats with lengths of 30 or greater, primarily consisting of reverse complementary repeats. The mitogenome analysis identified 114SSRs and 466 RNA editing sites. Analyses of codon usage, nucleotide diversity and gene migration from chloroplast to mitochondrial were also conducted. The collinear and comparative analysis of mitochondrial structures between P. granatum and its proximal species indicated that P. granatum 'Taishanhong' was closely related to P. granatum 'Qingpitian' and Lagerstroemia indica. Phylogenetic examination based on the mitogenome also confirmed the evolutionary relationship. CONCLUSION The results offered crucial information on the evolutionary biology of pomegranate and highlighted ways to promote the utilization of the species' germplasm.
Collapse
Affiliation(s)
- Lijuan Feng
- Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Zenghui Wang
- Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Chuanzeng Wang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Xuemei Yang
- Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Mengmeng An
- Zibo Academy of Agricultural Sciences, Zibo, 255000, Shandong, China
| | - Yanlei Yin
- Shandong Institute of Pomology, Taian, 271000, Shandong, China.
| |
Collapse
|