1
|
Fiallos N, Acuña S, Correa-Otero D, Venegas-Toloza M, Beldarrain T, Burgos J, Fuentes F, Bustamante F, Christiansen G, Roa V, Schott E, Alarcón-Enos J, Pastene-Navarrete E. Centrifugal Partition Chromatography Is a Powerful Tool for the Isolation of Antibiofilm Quantum Carbon Dots Synthesized by Hydrothermal Treatment of Avocado Peels. Molecules 2025; 30:1525. [PMID: 40286120 PMCID: PMC11990913 DOI: 10.3390/molecules30071525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Carbon quantum dots (CQD) are an emergent nanomaterial with unique optical and biological properties. However, the purification of CQD is one of the bottlenecks that makes it difficult to scale for application in different areas. In this work, we explore for the first time the potential of centrifugal partition chromatography (CPC) as an alternative preparative technology to achieve the purification of CQD at the gram scale. The hydrothermal method was used to synthesize CQD from avocado peels. After 6 h at 250 °C, a complex mix of strong blue-fluorescent CQDs were obtained and submitted to CPC fractionation without pretreatment. The best results were obtained with the solvent system n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v/v/v), in an elution-extrusion protocol. Nine fractions were obtained and were characterized by UV-VIS spectrophotometry, Fourier transform infrared (F-TIR), and field emission scanning electron microscopy (FESEM), confirming the presence of CQD of different sizes. CPC fractionations indicate that a polarity-based separation mechanism can be used to purify CQD. Interestingly, four fractions showed antibacterial and anti-biofilm effects on Pseudomonas putida and Listeria monocytogenes. Therefore, CPC allows for better refining of this type of nanomaterial, and in combination with other techniques, it would serve to obtain CQD of higher purity, facilitating the physicochemical and bioactivity characterization of these particles. CPC would also allow the use of waste, such as avocado peels, to obtain new materials.
Collapse
Affiliation(s)
- Nandis Fiallos
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Sergio Acuña
- Facultad de Ciencias de la Salud y los Alimentos, University of Bío-Bío, Chillán 4050231, Chile; (S.A.); (T.B.)
| | - Diana Correa-Otero
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Matías Venegas-Toloza
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Tatiana Beldarrain
- Facultad de Ciencias de la Salud y los Alimentos, University of Bío-Bío, Chillán 4050231, Chile; (S.A.); (T.B.)
| | - Josefina Burgos
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Francisca Fuentes
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Francisco Bustamante
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Girlenne Christiansen
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Vanesa Roa
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7510000, Chile; (V.R.); (E.S.)
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7510000, Chile; (V.R.); (E.S.)
| | - Julio Alarcón-Enos
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Edgar Pastene-Navarrete
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| |
Collapse
|
2
|
Subramani T, Saravanan H, David H, Solanke J, Rajaramon S, Dandela R, Solomon AP. Bioorganic compounds in quorum sensing disruption: strategies, Mechanisms, and future prospects. Bioorg Chem 2025; 156:108192. [PMID: 39874908 DOI: 10.1016/j.bioorg.2025.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Recent research has shed light on the complex world of bacterial communication through quorum sensing. This sophisticated intercellular signalling mechanism, driven by auto-inducers, regulates crucial bacterial community behaviours such as biofilm formation, expression of virulence factors, and resistance mechanisms. The increasing threat of antibiotic resistance, coupled with quorum sensing mediated response, necessitates alternative strategies to combat bacterial infections. Quorum quenching has emerged as a promising approach, utilizing quorum quenching enzymes and quorum sensing inhibitors to disrupt quorum sensing signalling pathways, thus reducing virulence and biofilm formation. This review focuses on natural and synthetic bioorganic compounds that act as quorum-sensing inhibitors, providing insights into their mechanisms, structure-activity relationships, and potential as anti-virulence agents. The review also explores the communication languages of bacteria, including AHLs in gram-negative bacteria, oligopeptides in gram-positive bacteria, and LuxS, a universal microbial language. By highlighting recent advancements and prospects in bioorganic QSIs, this article underscores their crucial role in developing effective anti-virulence therapies and combating the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Tarunkarthick Subramani
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Harish Saravanan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Jayshree Solanke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India.
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India.
| |
Collapse
|
3
|
Mohan A, Rajan PP, Kumar P, Jayakumar D, Mini M, Asha S, Vaikkathillam P. Theophylline as a quorum sensing and biofilm inhibitor in Pseudomonas aeruginosa and Chromobacterium violaceum. Int Microbiol 2024; 27:1457-1471. [PMID: 38342794 DOI: 10.1007/s10123-024-00487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/13/2024]
Abstract
Quorum sensing (QS) is pivotal in coordinating virulence factors and biofilm formation in various pathogenic bacteria, making it a prime target for disrupting bacterial communication. Pseudomonas aeruginosa is a member of the "ESKAPE" group of bacterial pathogens known for their association with antimicrobial resistance and biofilm formation. The current antibiotic arsenal falls short of addressing biofilm-related infections effectively, highlighting the urgent need for novel therapeutic agents. In this study, we explored the anti-QS and anti-biofilm properties of theophylline against two significant pathogens, Chromobacterium violaceum and P. aeruginosa. The production of violacein, pyocyanin, rhamnolipid, and protease was carried out, along with the evaluation of biofilm formation through methods including crystal violet staining, triphenyl tetrazolium chloride assay, and fluorescence microscopy. Furthermore, computational analyses were conducted to predict the targets of theophylline in the QS pathways of P. aeruginosa and C. violaceum. Our study demonstrated that theophylline effectively inhibits QS activity and biofilm formation in C. violaceum and P. aeruginosa. In P. aeruginosa, theophylline inhibited the production of key virulence factors, including pyocyanin, rhamnolipid, protease, and biofilm formation. The computational analyses suggest that theophylline exhibits robust binding affinity to CviR in C. violaceum and RhlR in P. aeruginosa, key participants in the QS-mediated biofilm pathways. Furthermore, theophylline also displays promising interactions with LasR and QscR in P. aeruginosa. Our study highlights theophylline as a versatile anti-QS agent and offers a promising avenue for future research to develop novel therapeutic strategies against biofilm-associated infections.
Collapse
Affiliation(s)
- Aparna Mohan
- Department of Zoology, Government College for Women, Thiruvananthapuram, -695014, Kerala, India
| | - Pooja P Rajan
- Department of Zoology, Government College for Women, Thiruvananthapuram, -695014, Kerala, India
| | - Praveen Kumar
- Department of Zoology, Government College for Women, Thiruvananthapuram, -695014, Kerala, India.
| | - Devi Jayakumar
- Department of Zoology, Government College for Women, Thiruvananthapuram, -695014, Kerala, India
| | - Minsa Mini
- Department of Zoology, Government College for Women, Thiruvananthapuram, -695014, Kerala, India
| | - Sneha Asha
- Department of Zoology, Government College for Women, Thiruvananthapuram, -695014, Kerala, India
| | - Parvathi Vaikkathillam
- Department of Zoology, Government College for Women, Thiruvananthapuram, -695014, Kerala, India
| |
Collapse
|
4
|
Berrios-Henríquez B, Venegas-Toloza M, Reyes-Fuentes M, Zúñiga-Arbalti F, Bustamante L, García-Cancino A, Alarcón-Enos J, Pastene-Navarrete E. Synthesis and Isolation of Phenol- and Thiol-Derived Epicatechin Adducts Prepared from Avocado Peel Procyanidins Using Centrifugal Partition Chromatography and the Evaluation of Their Antimicrobial and Antioxidant Activity. Molecules 2024; 29:2872. [PMID: 38930937 PMCID: PMC11206461 DOI: 10.3390/molecules29122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 06/28/2024] Open
Abstract
Polyphenols from agro-food waste represent a valuable source of bioactive molecules that can be recovered to be used for their functional properties. Another option is to use them as starting material to generate molecules with new and better properties through semi-synthesis. A proanthocyanidin-rich (PACs) extract from avocado peels was used to prepare several semi-synthetic derivatives of epicatechin by acid cleavage in the presence of phenol and thiol nucleophiles. The adducts formed by this reaction were successfully purified using one-step centrifugal partition chromatography (CPC) and identified by chromatographic and spectroscopic methods. The nine derivatives showed a concentration-dependent free radical scavenging activity in the DPPH assay. All compounds were also tested against a panel of pathogenic bacterial strains formed by Listeria monocytogenes (ATCC 7644 and 19115), Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 11775 and 25922), and Salmonella enterica (ATCC 13076). In addition, adducts were tested against two no-pathogenic strains, Limosilactobacillus fermentum UCO-979C and Lacticaseibacillus rhamnosus UCO-25A. Overall, thiol-derived adducts displayed antimicrobial properties and, in some specific cases, inhibited biofilm formation, particularly in Listeria monocytogenes (ATCC 7644). Interestingly, phenolic adducts were inactive against all the strains and could not inhibit its biofilm formation. Moreover, depending on the structure, in specific cases, biofilm formation was strongly promoted. These findings contribute to demonstrating that CPC is a powerful tool to isolate new semi-synthetic molecules using avocado peels as starting material for PACc extraction. These compounds represent new lead molecules with antioxidant and antimicrobial activity.
Collapse
Affiliation(s)
- Barbara Berrios-Henríquez
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
| | - Matías Venegas-Toloza
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| | - María Reyes-Fuentes
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Santiago 8380494, Chile;
| | - Felipe Zúñiga-Arbalti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Luis Bustamante
- Department of Instrumental Analysis, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Apolinaria García-Cancino
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
| | - Julio Alarcón-Enos
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| | - Edgar Pastene-Navarrete
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| |
Collapse
|
5
|
Kumagai M, Matsuda A, Shiiba N, Tsuruta T, Endo H, Nishikawa K, Morimoto Y. Structure-activity relationship of anti-inflammatory meroterpenoids isolated from Dictyopteris polypodioides in RAW264 cells. Biosci Biotechnol Biochem 2024; 88:594-600. [PMID: 38553960 DOI: 10.1093/bbb/zbae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 05/23/2024]
Abstract
In this study, we explored anti-inflammatory compounds from the brown alga Dictyopteris polypodioides and isolated 7 meroterpenoids. Their anti-inflammatory activities were evaluated using the lipopolysaccharide-stimulated mouse macrophage cell line, RAW264. Yahazunol (1) exhibited similar nitric oxide (NO) production inhibitory activity as zonarol (2), which has previously been shown to be an anti-inflammatory compound. Yahazunol (1), zonarol (2), and isozonarol (3) inhibited not only NO production but also inducible nitric oxide synthase, interleukin-6, and C-C motif chemokine ligand 2 mRNA expression in RAW264 cells. The structure-activity relationships of the 11 compounds, including their synthetic analogs, revealed the significance of the hydroquinone moiety in the anti-inflammatory activity of these sesquiterpenoids in RAW264 cells. Diacetylated zonarol (9) exhibited an activity comparable to that of zonarol as a result of intracellular deacetylation. These results provide new insights into the anti-inflammatory activity of hydroquinone-containing natural products.
Collapse
Affiliation(s)
- Momochika Kumagai
- Faculty of Fisheries, Kagoshima University, Shimoarata, Kagoshima, Japan
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Japan
| | - Akana Matsuda
- Faculty of Fisheries, Kagoshima University, Shimoarata, Kagoshima, Japan
| | - Nozomi Shiiba
- Faculty of Fisheries, Kagoshima University, Shimoarata, Kagoshima, Japan
| | - Tomoki Tsuruta
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Japan
| | - Hikaru Endo
- Faculty of Fisheries, Kagoshima University, Shimoarata, Kagoshima, Japan
| | - Keisuke Nishikawa
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Japan
| | - Yoshiki Morimoto
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Japan
| |
Collapse
|
6
|
Hernández-Moreno LV, Pabón-Baquero LC, Prieto-Rodriguez JA, Patiño-Ladino OJ. Bioactive Compounds from P. pertomentellum That Regulate QS, Biofilm Formation and Virulence Factor Production of P. aeruginosa. Molecules 2023; 28:6181. [PMID: 37687010 PMCID: PMC10488431 DOI: 10.3390/molecules28176181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen responsible for many nosocomial infections. This bacterium uses Quorum Sensing (QS) to generate antimicrobial resistance (AMR) so its disruption is considered a novel approach. The current study describes the antibiofilm and QS inhibitory potential of extract and chemical components from Piper pertomentellum. The methodo- logy included the phytochemical study on the aerial part of the species, the determination of QS inhibition efficacy on Chromobacterium violaceum and the evaluation of the effect on biofilm formation and virulence factors on P. aeruginosa. The phytochemical study led to the isolation and identification of a new piperamide (ethyltembamide 1), together with four known amides (tembamide acetate 2, cepharadione B 3, benzamide 4 and tembamide 5). The results indicated that the ethanolic extract and some fractions reduced violacein production in C. violaceum, however, only the ethanolic extract caused inhibition of biofilm formation of P. aeruginosa on polystyrene microtiter plates. Finally, the investigation determined that molecules (1-5) inhibited the formation of biofilms (50% approximately), while compounds 2-4 can inhibit pyocyanin and elastase production (30-50% approximately). In this way, the study contributes to the determination of the potential of extract and chemical constituents from P pertomentellum to regulate the QS system in P. aeruginosa.
Collapse
Affiliation(s)
- Lida V. Hernández-Moreno
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia; (L.V.H.-M.); (O.J.P.-L.)
| | - Ludy C. Pabón-Baquero
- Escuela de Ciencias Básicas y Aplicadas, Universidad de La Salle, Bogotá 111711, Colombia;
| | - Juliet A. Prieto-Rodriguez
- Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Oscar J. Patiño-Ladino
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia; (L.V.H.-M.); (O.J.P.-L.)
| |
Collapse
|