1
|
Li Y, Ma X, Xiao LD, Yu YN, Gong ZH. CaWRKY20 Negatively Regulates Plant Resistance to Colletotrichum scovillei in Pepper. PLANT, CELL & ENVIRONMENT 2025; 48:1514-1534. [PMID: 39462903 DOI: 10.1111/pce.15205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Chili anthracnose, a fungal disease caused by Colletotrichum scovillei, is among the most devastating diseases affecting pepper (Capsicum annuum L.). Although WRKY transcription factors play important roles in plant immunity, it is unknown how WRKY gene family members contribute to pepper plant resistance to C. scovillei. Here, CaWRKY20 was found to negatively regulate pepper resistance to C. scovillei, which was demonstrated by virus-induced gene silencing and transient overexpression in pepper. Moreover, overexpression of CaWRKY20 enhanced susceptibility to C. scovillei in tomato. Additionally, our findings demonstrated that CaWRKY20 can indirectly regulate the expression of salicylic acid (SA)-related defense genes (CaPR1, CaPR10 and CaSAR8.2) as well as reactive oxygen species (ROS)-scavenging enzyme genes (CaCAT, CaPOD and CaSOD) in response to C. scovillei. In addition, CaWRKY20 was found to interact with CaMIEL1 in the nucleus to regulate the defense response to C. scovillei in pepper. Furthermore, CaWRKY20 directly bound to the W-box in the promoter of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (CaSARD1) and suppressed its expression, resulting in reduced resistance to C. scovillei. These results will clarify the mechanism by which WRKY transcription factors are involved in pepper disease resistance and can thus facilitate molecular breeding for anthracnose-resistant varieties.
Collapse
Affiliation(s)
- Yang Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, People's Republic of China
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Luo-Dan Xiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Yibin Research Institute of Tea Industry, Yibin, People's Republic of China
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Zhao YQ, Sun C, Hu KD, Yu Y, Liu Z, Song YC, Xiong RJ, Ma Y, Zhang H, Yao GF. A transcription factor SlWRKY71 activated the H 2S generating enzyme SlDCD1 enhancing the response to Pseudomonas syringae pv DC3000 in tomato leaves. THE NEW PHYTOLOGIST 2025. [PMID: 39887348 DOI: 10.1111/nph.20431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
H2S is a well-known gaseous signaling molecule that plays important roles in plant response to biotic stresses. Pseudomonas syringae pv tomato (Pst) could cause enormous loss, while whether H2S could modulate plant defense against Pst is still unclear. By CRISPR/Cas9, the Sldcd1 gene editing mutant showed reduced endogenous H2S content and attenuated resistance, whereas treatment with exogenous H2S could enhance the resistance. A transcription factor, SlWRKY71, was screened and identified to promote the transcription of SlDCD1 via yeast one-hybrid, dual-luciferase reporter system, electrophoretic mobility shift assays, and transient overexpression. Here, it was found that exogenous H2S relieved the symptoms of bacterial speck disease in tomato leaves, conferring tolerance to Pst. DC3000, and the expression of the H2S-producing enzyme SlDCD1 was significantly induced. The Slwrky71 mutant also showed reduced defense in tomato leaves against Pst. DC3000, whereas SlWRKY71-OE tomato leaves showed increased tolerance. Transient overexpression of SlDCD1 in the context of Slwrky71 with exogenous H2S treatment has stronger resistance, and the overexpression of SlWRKY71 in the context of Sldcd1 showed relatively weak disease resistance, and with the addition of H2S enhanced the effect. Therefore, we concluded that SlWRKY71 could activate SlDCD1 expression and promote endogenous H2S production, thereby improving tomato leaves resistance to Pst. DC3000.
Collapse
Affiliation(s)
- Yu-Qi Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chen Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yue Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ying-Chun Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ren-Jie Xiong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yue Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
3
|
Li D, Zhang H, Zhou Q, Tao Y, Wang S, Wang P, Wang A, Wei C, Liu S. The Laccase Family Gene CsLAC37 Participates in Resistance to Colletotrichum gloeosporioides Infection in Tea Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:884. [PMID: 38592904 PMCID: PMC10975366 DOI: 10.3390/plants13060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Fungal attacks have become a major obstacle in tea plantations. Colletotrichum gloeosporioides is one of the most devastating fungal pathogens in tea plantations that can severely affect tea yield and quality. However, the molecular mechanism of resistance genes involved in anthracnose is still largely unknown in tea plants. Here, we found that the laccase gene CsLAC37 was involved in the response to fungal infection based on a transcriptome analysis. The full-length CDS of CsLAC37 was cloned, and its protein sequence had the closest relationship with the Arabidopsis AtLAC15 protein compared to other AtLACs. Tissue-specific expression analysis showed that CsLAC37 had higher expression levels in mature leaves and stems than in the other tissues. Subcellular localization showed that the CsLAC37 protein was predominantly localized in the cell membrane. The expression levels of CsLAC37 were upregulated at different time points under cold, salt, SA, and ABA treatments. qRT-PCR confirmed that CsLAC37 responded to both Pestalotiopsis-like species and C. gloeosporioides infections. Functional validation showed that the hydrogen peroxide (H2O2) content increased significantly, and POD activity decreased in leaves after antisense oligonucleotide (AsODN) treatment compared to the controls. The results demonstrated that CsLAC37 may play an important role in resistance to anthracnose, and the findings provide a theoretical foundation for molecular breeding of tea varieties with resistance to fungal diseases.
Collapse
Affiliation(s)
- Dangqiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Hongxiu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Qianqian Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Yongning Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Shuangshuang Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Pengke Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Aoni Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| |
Collapse
|
4
|
Wang Y, Chen B, Cheng C, Fu B, Qi M, Du H, Geng S, Zhang X. Comparative Transcriptomics Analysis Reveals the Differences in Transcription between Resistant and Susceptible Pepper ( Capsicum annuum L.) Varieties in Response to Anthracnose. PLANTS (BASEL, SWITZERLAND) 2024; 13:527. [PMID: 38498545 PMCID: PMC10892400 DOI: 10.3390/plants13040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 03/20/2024]
Abstract
Pepper (Capsicum annuum L.) is a herbaceous plant species in the family Solanaceae. Capsicum anthracnose is caused by the genus Colletotrichum. spp., which decreases pepper production by about 50% each year due to anthracnose. In this study, we evaluated the resistance of red ripe fruits from 17 pepper varieties against anthracnose fungus Colletotrichum capsici. We assessed the size of the lesion diameter and conducted significance analysis to identify the resistant variety of B158 and susceptible variety of B161. We selected a resistant cultivar B158 and a susceptible cultivar B161 of pepper and used a transcription to investigate the molecular mechanisms underlying the plant's resistance to C. capsici, of which little is known. The inoculated fruit from these two varieties were used for the comparative transcription analysis, which revealed the anthracnose-induced differential transcription in the resistant and susceptible pepper samples. In the environment of an anthrax infection, we found that there were more differentially expressed genes in resistant varieties compared to susceptible varieties. Moreover, the response to stimulus and stress ability was stronger in the KANG. The transcription analysis revealed the activation of plant hormone signaling pathways, phenylpropanoid synthesis, and metabolic processes in the defense response of peppers against anthracnose. In addition, ARR-B, AP2-EREBP, bHLH, WRKY, and NAC are associated with disease resistance to anthracnose. Notably, WRKY and NAC were found to have a potentially positive regulatory role in the defense response against anthracnose. These findings contribute to a more comprehensive understanding of the resistance mechanisms of red pepper fruit to anthracnose infection, providing valuable molecular insights for further research on the resistance mechanisms and genetic regulations during this developmental stage of pepper.
Collapse
Affiliation(s)
- Yixin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (B.C.); (C.C.); (H.D.); (S.G.)
| | - Bin Chen
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (B.C.); (C.C.); (H.D.); (S.G.)
| | - Chunyuan Cheng
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (B.C.); (C.C.); (H.D.); (S.G.)
| | - Bingkun Fu
- College of Horticultural, China Agricultural University, Beijing 100097, China; (B.F.); (M.Q.)
| | - Meixia Qi
- College of Horticultural, China Agricultural University, Beijing 100097, China; (B.F.); (M.Q.)
| | - Heshan Du
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (B.C.); (C.C.); (H.D.); (S.G.)
| | - Sansheng Geng
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (B.C.); (C.C.); (H.D.); (S.G.)
| | - Xiaofen Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (B.C.); (C.C.); (H.D.); (S.G.)
| |
Collapse
|