1
|
Jiang J, Li R, Wang K, Xu Y, Lu H, Zhang D. Combined Bulked Segregant Analysis-Sequencing and Transcriptome Analysis to Identify Candidate Genes Associated with Cold Stress in Brassica napus L. Int J Mol Sci 2025; 26:1148. [PMID: 39940915 PMCID: PMC11818577 DOI: 10.3390/ijms26031148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Cold tolerance in rapeseed is closely related to its growth, yield, and geographical distribution. However, the mechanisms underlying cold resistance in rapeseed remain unclear. This study aimed to explore cold resistance genes and provide new insights into the molecular mechanisms of cold resistance in rapeseed. Rapeseed M98 (cold-sensitive line) and D1 (cold-tolerant line) were used as parental lines. In their F2 population, 30 seedlings with the lowest cold damage levels and 30 with the highest cold damage levels were selected to construct cold-tolerant and cold-sensitive pools, respectively. The two pools and parental lines were analyzed using bulk segregant sequencing (BSA-seq). The G'-value analysis indicated a single peak on Chromosome C09 as the candidate interval, which had a 2.59 Mb segment with 69 candidate genes. Combined time-course and weighted gene co-expression network analyses were performed at seven time points to reveal the genetic basis of the two-parent response to low temperatures. Twelve differentially expressed genes primarily involved in plant cold resistance were identified. Combined BSA-seq and transcriptome analysis revealed BnaC09G0354200ZS, BnaC09G0353200ZS, and BnaC09G0356600ZS as the candidate genes. Quantitative real-time PCR validation of the candidate genes was consistent with RNA-seq. This study facilitates the exploration of cold tolerance mechanisms in rapeseed.
Collapse
Affiliation(s)
- Jiayi Jiang
- Xianghu Laboratory, Hangzhou 311231, China; (J.J.); (R.L.); (K.W.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Rihui Li
- Xianghu Laboratory, Hangzhou 311231, China; (J.J.); (R.L.); (K.W.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Kaixuan Wang
- Xianghu Laboratory, Hangzhou 311231, China; (J.J.); (R.L.); (K.W.)
| | - Yifeng Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Hejun Lu
- Xianghu Laboratory, Hangzhou 311231, China; (J.J.); (R.L.); (K.W.)
| | - Dongqing Zhang
- Xianghu Laboratory, Hangzhou 311231, China; (J.J.); (R.L.); (K.W.)
| |
Collapse
|
2
|
Wang D, Zeng Y, Yang X, Nie S. Characterization of DREB family genes in Lotus japonicus and LjDREB2B overexpression increased drought tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2024; 24:497. [PMID: 39075356 PMCID: PMC11285619 DOI: 10.1186/s12870-024-05225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/30/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Drought stress affects plant growth and development. DREB proteins play important roles in modulating plant growth, development, and stress responses, particularly under drought stress. To study the function of DREB transcription factors (TFs), we screened key DREB-regulating TFs for drought in Lotus japonicus. RESULTS Forty-two DREB TFs were identified, and phylogenetic analysis of proteins from L. japonicus classified them into five subfamilies (A1, A2, A4, A5, A6). The gene motif composition of the proteins is conserved within the same subfamily. Based on the cis-acting regulatory element analysis, we identified many growth-, hormone-, and stress-responsive elements within the promoter regions of DREB. We further analyzed the expression pattern of four genes in the A2 subfamily in response to drought stress. We found that the expression of most of the LjDREB A2 subfamily genes, especially LjDREB2B, was induced by drought stress. We further generated LjDREB2B overexpression transgenic Arabidopsis plants. Under drought stress, the growth of wild-type (WT) and overexpressing LjDREB2B (OE) Arabidopsis lines was inhibited; however, OE plants showed better growth. The malondialdehyde content of LjDREB2B overexpressing lines was lower than that of the WT plants, whereas the proline content and antioxidant enzyme activities in the OE lines were significantly higher than those in the WT plants. Furthermore, after drought stress, the expression levels of AtP5CS1, AtP5CS2, AtRD29A, and AtRD29B in the OE lines were significantly higher than those in the WT plants. CONCLUSIONS Our results facilitate further functional analysis of L. japonicus DREB. LjDREB2B overexpression improves drought tolerance in transgenic Arabidopsis. These results indicate that DREB holds great potential for the genetic improvement of drought tolerance in L. japonicus.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, China
| | - Yuanyuan Zeng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, China
| | - Xiuxiu Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, China
| | - Shuming Nie
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
3
|
Zhu M, Zheng L, Cao S, Liu Q, Wei S, Zhou Y, Gao F. AnDREB5.1, a A5 group DREB gene from desert shrub Ammopiptanthus nanus, confers osmotic and cold stress tolerances in transgenic tobacco. PHYSIOLOGIA PLANTARUM 2024; 176:e14272. [PMID: 38566275 DOI: 10.1111/ppl.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
The Dehydration-Responsive Element Binding (DREB) subfamily of transcription factors plays crucial roles in plant abiotic stress response. Ammopiptanthus nanus (A. nanus) is an eremophyte exhibiting remarkable tolerance to environmental stress and DREB proteins may contribute to its tolerance to water deficit and low-temperature stress. In the present study, an A. nanus DREB A5 group transcription factor gene, AnDREB5.1, was isolated and characterized in terms of structure and function in abiotic stress tolerance. AnDREB5.1 protein is distributed in the nucleus, possesses transactivation capacity, and is capable of binding to DRE core cis-acting element. The transcription of AnDREB5.1 was induced under osmotic and cold stress. Tobacco seedlings overexpressing AnDREB5.1 displayed higher tolerance to cold stress, osmotic stress, and oxidative stress compared to wild-type tobacco (WT). Under osmotic and cold stress, overexpression of AnDREB5.1 increased antioxidant enzyme activity in tobacco leaves, inhibiting excessive elevation of ROS levels. Transcriptome sequencing analysis showed that overexpression of AnDREB5.1 raised the tolerance of transgenic tobacco seedlings to abiotic stress by regulating multiple genes, including antioxidant enzymes, transcription factors, and stress-tolerant related functional genes like NtCOR413 and NtLEA14. This study provides new evidence for understanding the potential roles of the DREB A5 subgroup members in plants.
Collapse
Affiliation(s)
- Ming Zhu
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Yunnan Open University, Kunming, Yunnan, China
| | - Lamei Zheng
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Shilin Cao
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qi Liu
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Shanjun Wei
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yijun Zhou
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Fei Gao
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|