1
|
Carvalho FEL, Montenegro AC, Escobar-Pachajoa LD, Rojas-Molina J, Camacho-Diaz JE, Rengifo-Estrada GA. Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry. PLANTS (BASEL, SWITZERLAND) 2025; 14:1101. [PMID: 40219169 PMCID: PMC11991088 DOI: 10.3390/plants14071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
Global cacao production, primarily led by African countries, is facing a crisis, which presents growth potential for South American countries like Colombia, Peru, and Ecuador. However, a significant challenge for these countries is cadmium (Cd) contamination in cacao beans. Agroforestry systems with cacao (CAFSs) improve soil health and can remediate Cd through tree phytoextraction. Effective phytoremediation requires Cd-tolerant, high-biomass species and preferential Cd allocation to stems. This study evaluated the phytoremediation potential of four forest species (Cariniana pyriformis Miers, Terminalia superba Engl. and Diels, Swietenia macrophylla King, and Cedrela odorata L.) under cadmium (Cd) exposure. C. pyriformis exhibited hypertolerance, showing minimal biomass reduction (less than 15%, changing from 1.619 to 1.343 g plant-1) under excess Cd conditions, compared to Cedrela odorata and T. superba, which showed significant biomass reductions. C. pyriformis and T. superba showed notable Cd accumulation in stems (652.99 and 635.39 mg Cd kg-1), an essential feature for wood tree-mediated phytoextraction, while C. odorata allocated more Cd to leaves (35.35 mg Cd kg-1). C. pyriformis maintained high photosynthesis (12.8 μmol CO2 m-2 s-1), light use efficiency (0.086 mol CO2 mol photons-1), and an increased relative growth rate (0.575 g g-1 day-1) under Cd exposure. Overall, C. pyriformis demonstrated significant potential for use in phytoremediation due to its high Cd tolerance (84%), efficient allocation to stems (17%), and sustained physiological performance under Cd exposure. Conversely, C. odorata allocates Cd to leaves (16%), which can reintroduce Cd into the soil, and exhibits a low tolerance index (54%) under higher cadmium contamination. Further studies are still needed to understand the specific mechanisms of Cd accumulation in stems of promising species like C. pyriformis and T. superba.
Collapse
Affiliation(s)
- Fabricio E. L. Carvalho
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Rionegro 687517, Santander, Colombia; (L.D.E.-P.); (J.R.-M.); (J.E.C.-D.); (G.A.R.-E.)
| | - Andrea C. Montenegro
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Mosquera 250047, Cundinamarca, Colombia;
| | - Laura D. Escobar-Pachajoa
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Rionegro 687517, Santander, Colombia; (L.D.E.-P.); (J.R.-M.); (J.E.C.-D.); (G.A.R.-E.)
| | - Jairo Rojas-Molina
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Rionegro 687517, Santander, Colombia; (L.D.E.-P.); (J.R.-M.); (J.E.C.-D.); (G.A.R.-E.)
| | - Jorge E. Camacho-Diaz
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Rionegro 687517, Santander, Colombia; (L.D.E.-P.); (J.R.-M.); (J.E.C.-D.); (G.A.R.-E.)
| | - Gersain A. Rengifo-Estrada
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Rionegro 687517, Santander, Colombia; (L.D.E.-P.); (J.R.-M.); (J.E.C.-D.); (G.A.R.-E.)
| |
Collapse
|
2
|
Trimmel S, Wagner S, Feiner L, Feiner M, Haluza D, Hood-Nowotny R, Pitha U, Prohaska T, Puschenreiter M, Spörl P, Watzinger A, Ziss E, Irrgeher J. Compost amendment in urban gardens: elemental and isotopic analysis of soils and vegetable tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47022-47038. [PMID: 38985423 PMCID: PMC11512910 DOI: 10.1007/s11356-024-34240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Urban horticulture poses a sustainable form of food production, fosters community engagement and mitigates the impacts of climate change on cities. Yet, it can also be tied to health challenges related to soil contamination. This work builds on a previous study conducted on eleven urban gardens in the city of Vienna, Austria. Following the findings of elevated Pb levels in some soil and plant samples within that project, the present study investigates the elemental composition of soil and plants from two affected gardens 1 year after compost amendment. Inductively coupled plasma mass spectrometry (ICP-MS) analysis of skin, pulp and seeds of tomato fruits revealed minor variations in elemental composition which are unlikely to have an impact on food safety. In turn, a tendency of contaminant accumulation in root tips and leaves of radishes was found. Washing of lettuce led to a significant reduction in the contents of potentially toxic elements such as Be, Al, V, Ni, Ga and Tl, underscoring the significance of washing garden products before consumption. Furthermore, compost amendments led to promising results, with reduced Zn, Cd and Pb levels in radish bulbs. Pb isotope ratios in soil and spinach leaf samples taken in the previous study were assessed by multi-collector (MC-) ICP-MS to trace Pb uptake from soils into food. A direct linkage between the Pb isotopic signatures in soil and those in spinach leaves was observed, underscoring their effectiveness as tracers of Pb sources in the environment.
Collapse
Affiliation(s)
- Simone Trimmel
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Stefan Wagner
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Laura Feiner
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Maria Feiner
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Daniela Haluza
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Rebecca Hood-Nowotny
- Department of Forest- and Soil Sciences, Institute of Soil Research (IBF), BOKU University, Vienna, Austria
| | - Ulrike Pitha
- Department of Civil Engineering and Natural Hazards, Institute of Soil Bioengineering and Landscape Construction (IBLB), BOKU University, Vienna, Austria
| | - Thomas Prohaska
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Markus Puschenreiter
- Department of Forest- and Soil Sciences, Institute of Soil Research (IBF), BOKU University, Vienna, Austria
| | - Philipp Spörl
- Department of Civil Engineering and Natural Hazards, Institute of Soil Bioengineering and Landscape Construction (IBLB), BOKU University, Vienna, Austria
| | - Andrea Watzinger
- Department of Forest- and Soil Sciences, Institute of Soil Research (IBF), BOKU University, Vienna, Austria
| | - Elisabeth Ziss
- Department of Forest- and Soil Sciences, Institute of Soil Research (IBF), BOKU University, Vienna, Austria
| | - Johanna Irrgeher
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria.
| |
Collapse
|
3
|
Bravo D, Quiroga-Mateus R, López-Casallas M, Torres S, Contreras R, Otero ACM, Araujo-Carrillo GA, González-Orozco CE. Assessing the cadmium content of cacao crops in Arauca, Colombia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:387. [PMID: 38509267 PMCID: PMC10954870 DOI: 10.1007/s10661-024-12539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
The district of Arauca is the second-largest producer of cacao in Colombia. However, despite its quality, it faces issues for export due to levels of cadmium (Cd) higher than the regulatory thresholds. A central question is how it may impact agricultural performance in the presence of Cd in cacao and chocolates. This study quantified Cd in cacao plantations from Arauca. Thus, 180 farms were assessed in the municipalities of Arauquita, Fortul, Saravena, and Tame. Five sample types (soil, irrigation channel sediment, soil litter, cacao seeds, and chocolates) were assessed for Cd. As a technological innovation, the new MXRF technology was used for Cd in chocolates. The sequence of Cd content was soil litter > chocolate > soils > cacao seeds > irrigation-channel sediment. A gradient north-south of Cd content in soil was observed, where highest content was found in farms near the Arauca River, and lower farther away. In irrigation channel sediment, Cd levels averaged 0.07 mg kg-1. The Cd content in cacao seeds was 0.78 mg kg-1 on average. Cd content in chocolates was above the threshold (1.10 mg kg-1 on average, including several cacao mass percentages). These artisanal chocolate bars produced by single farms were near the limit of Cd set by the European Union (up to 0.8 mg kg-1). Therefore, mixing beans from different farms could reduce their Cd content. The present study underscores the complexity of Cd distribution, emphasizing the importance of integrating soil, crop, and landscape features in managing and mitigating Cd levels in cacao.
Collapse
Affiliation(s)
- Daniel Bravo
- Laboratory of Soil Microbiology and Calorimetry, Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 Vía Bogotá-Mosquera, Cundinamarca, Colombia.
| | - Ruth Quiroga-Mateus
- Laboratory of Soil Microbiology and Calorimetry, Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 Vía Bogotá-Mosquera, Cundinamarca, Colombia
| | - Marcela López-Casallas
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 17 Vía Puerto López, Villavicencio, Meta, Colombia
| | - Shirley Torres
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 17 Vía Puerto López, Villavicencio, Meta, Colombia
| | - Ramiro Contreras
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 17 Vía Puerto López, Villavicencio, Meta, Colombia
| | - Andres Camilo Mendez Otero
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 17 Vía Puerto López, Villavicencio, Meta, Colombia
| | - Gustavo A Araujo-Carrillo
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 Vía Bogotá-Mosquera, Cundinamarca, Colombia
| | - Carlos E González-Orozco
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 17 Vía Puerto López, Villavicencio, Meta, Colombia
| |
Collapse
|