1
|
Salma Santhosh S, Meena S, Baskar M, Karthikeyan S, Vanniarajan C, Ramesh T. Transformative strategies for saline soil restoration: Harnessing halotolerant microorganisms and advanced technologies. World J Microbiol Biotechnol 2025; 41:140. [PMID: 40289223 DOI: 10.1007/s11274-025-04342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025]
Abstract
Soil salinity is a critical global challenge that severely impairs crop productivity and soil health by disrupting water uptake, nutrient acquisition, and ionic balance in plants, thereby posing a significant threat to food security. This review underscores innovative strategies to mitigate salinity stress, focusing on the pivotal role of halotolerant microorganisms and their synergistic interactions with plants. Halotolerant microorganisms enhance plant resilience through diverse mechanisms under salinity, including exopolysaccharide production, sodium sequestration, and phytohormone regulation. It improves ionic balance, nutrient uptake, and root development, facilitated by osmoregulatory and genetic adaptations. In this discussion, we explored emerging technologies, including genome editing (e.g., CRISPR-Cas9), synthetic biology, and advanced omics-based tools such as metagenomics and metatranscriptomics. These cutting-edge approaches offer profound insights into microbial diversity and their functional adaptations to saline environments. By leveraging these technologies, it is possible to design targeted bioremediation strategies through the customization of microbial functionalities to address specific environmental challenges effectively. Advanced methodologies, such as microbial volatile organic compounds (mVOCs), nanotechnology, and stress-tolerant microbial consortia, significantly enhance plant stress tolerance and facilitate soil restoration. Moreover, integrating digital technologies, including machine learning and artificial intelligence (AI), optimizes bioremediation processes by providing precise, scalable, and adaptable solutions tailored to diverse agricultural ecosystems. The synergistic application of halotolerant microbe-mediated approaches with advanced biotechnological and digital innovations presents a transformative strategy for saline soil restoration. Future research should focus on harmonizing these technologies and methodologies to maximize plant-microbe interactions and establish resilient, sustainable agricultural systems.
Collapse
Affiliation(s)
- S Salma Santhosh
- Department of Soil Science & Agricultural Chemistry, Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu, India.
| | - S Meena
- Department of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - M Baskar
- Department of Soil Science & Agricultural Chemistry, Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu, India
| | - S Karthikeyan
- Centre for Post Harvest Technology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - C Vanniarajan
- Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu, India
| | - T Ramesh
- Department of Agronomy, Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
2
|
García-Castro A, Román-Gutiérrez AD, Guzmán-Ortiz FA, Cariño-Cortés R. Antihypertensive Effect of Perla and Esmeralda Barley ( Hordeum vulgare L.) Sprouts in an Induction Model with L-NAME In Vivo. Metabolites 2024; 14:678. [PMID: 39728459 DOI: 10.3390/metabo14120678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Hypertension is one of the leading causes of premature death worldwide. Despite advances in conventional treatments, there remains a significant need for more effective and natural alternatives to control hypertension. In this context, sprouted barley extracts have emerged as a potential therapeutic option. This study presents the evaluation of the bioactive properties of extracts from two varieties of barley germinated for different periods (3, 5, and 7 days), focusing on their potential to regulate blood pressure mechanisms. Objectives/Methods: The main objective was to assess the effects of these extracts on blood pressure regulation in N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME)-induced hypertensive rats. Renal (creatinine, urea, uric acid, and total protein) and endothelial (NOx levels) function, angiotensin-converting enzyme (ACE) I and II activity, and histopathological effects on heart and kidney tissues were evaluated. Results: In particular, Esmeralda barley extract demonstrated 83% inhibition of ACE activity in vitro. Furthermore, the combined administration of sprouted barley extract (SBE) and captopril significantly reduced blood pressure and ACE I and II activity by 22%, 81%, and 76%, respectively, after 3, 5, and 7 days of germination. The treatment also led to reductions in protein, creatinine, uric acid, and urea levels by 3%, 38%, 42%, and 48%, respectively, along with a 66% increase in plasma NO concentrations. Conclusions: This study highlights the bioactive properties of barley extracts with different germination times, emphasizing their potential health benefits as a more effective alternative to conventional antihypertensive therapies.
Collapse
Affiliation(s)
- Abigail García-Castro
- Academic Area of Chemistry, Autonomous University of the State of Hidalgo, Pachuca-Tulancingo Highway Km 4.5, City of Knowledge, Col. Carboneras, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Alma D Román-Gutiérrez
- Academic Area of Chemistry, Autonomous University of the State of Hidalgo, Pachuca-Tulancingo Highway Km 4.5, City of Knowledge, Col. Carboneras, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Fabiola A Guzmán-Ortiz
- CONAHCYT-Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Ciudad del Conocimiento, Col. Carboneras, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Raquel Cariño-Cortés
- Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Eliseo Ramírez Ulloa 400, Doctores Pachuca, Pachuca 42090, Hidalgo, Mexico
| |
Collapse
|
3
|
Fu YB. Patterns of the Predicted Mutation Burden in 19,778 Domesticated Barley Accessions Conserved Ex Situ. Int J Mol Sci 2024; 25:5930. [PMID: 38892116 PMCID: PMC11172543 DOI: 10.3390/ijms25115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Long-term conservation of more than 7 million plant germplasm accessions in 1750 genebanks worldwide is a challenging mission. The extent of deleterious mutations present in conserved germplasm and the genetic risk associated with accumulative mutations are largely unknown. This study took advantage of published barley genomic data to predict sample-wise mutation burdens for 19,778 domesticated barley (Hordeum vulgare L.) accessions conserved ex situ. It was found that the conserved germplasm harbored 407 deleterious mutations and 337 (or 82%) identified deleterious alleles were present in 20 (or 0.1%) or fewer barley accessions. Analysis of the predicted mutation burdens revealed significant differences in mutation burden for several groups of barley germplasm (landrace > cultivar (or higher burden estimate in landrace than in cultivar); winter barley > spring barley; six-rowed barley > two-rowed barley; and 1000-accession core collection > non-core germplasm). Significant differences in burden estimate were also found among seven major geographical regions. The sample-wise predicted mutation burdens were positively correlated with the estimates of sample average pairwise genetic difference. These findings are significant for barley germplasm management and utilization and for a better understanding of the genetic risk in conserved plant germplasm.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| |
Collapse
|
4
|
Ren P, Ma L, Bao W, Wang J. Genome-Wide Identification and Hormone Response Analysis of the COBL Gene Family in Barley. Genes (Basel) 2024; 15:612. [PMID: 38790240 PMCID: PMC11121046 DOI: 10.3390/genes15050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Barley (Hordeum vulgare L.), a diverse cereal crop, exhibits remarkable versatility in its applications, ranging from food and fodder to industrial uses. The content of cellulose in barley is significantly influenced by the COBRA genes, which encode the plant glycosylphosphatidylinositol (GPI)-anchored protein (GAP) that plays a pivotal role in the deposition of cellulose within the cell wall. The COBL (COBRA-Like) gene family has been discovered across numerous species, yet the specific members of this family in barley remain undetermined. In this study, we discovered 13 COBL genes within the barley genome using bioinformatics methods, subcellular localization, and protein structure analysis, finding that most of the barley COBL proteins have a signal peptide structure and are localized on the plasma membrane. Simultaneously, we constructed a phylogenetic tree and undertook a comprehensive analysis of the evolutionary relationships. Other characteristics of HvCOBL family members, including intraspecific collinearity, gene structure, conserved motifs, and cis-acting elements, were thoroughly characterized in detail. The assessment of HvCOBL gene expression in barley under various hormone treatments was conducted through qRT-PCR analysis, revealing jasmonic acid (JA) as the predominant hormonal regulator of HvCOBL gene expression. In summary, this study comprehensively identified and analyzed the barley COBL gene family, aiming to provide basic information for exploring the members of the HvCOBL gene family and to propose directions for further research.
Collapse
Affiliation(s)
- Panrong Ren
- School of Agriculture and Bioengineering, Longdong University, Qingyang 745000, China; (L.M.); (W.B.)
| | - Liang Ma
- School of Agriculture and Bioengineering, Longdong University, Qingyang 745000, China; (L.M.); (W.B.)
| | - Wei Bao
- School of Agriculture and Bioengineering, Longdong University, Qingyang 745000, China; (L.M.); (W.B.)
| | - Jie Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China;
| |
Collapse
|
5
|
Engels JMM, Ebert AW. How Can We Strengthen the Global Genetic Resources' Conservation and Use System? PLANTS (BASEL, SWITZERLAND) 2024; 13:702. [PMID: 38475548 DOI: 10.3390/plants13050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Genetic resources serve as the foundation of our food supply and are building blocks for the development of new crop varieties that support sustainable crop production in the face of climate change, as well as for the delivery of healthy diets to a continuously growing global population. With the encouragement of the FAO and with technical guidance and assistance from the International Board for Plant Genetic Resources (IBPGR), almost 2000 genebanks have been established worldwide for the ex situ conservation of genetic resources since the middle of the last century. The global genetic resources' conservation and use system has evolved over several decades and presents apparent weaknesses, without a clear blueprint. Therefore, a Special Issue (SI) of Plants on 'A Critical Review of the Current Approaches and Procedures of Plant Genetic Resources Conservation and Facilitating Use: Theory and Practice' was initiated. This SI comprises 13 review and research papers that shed light on the history and the political dimensions of the global system; its current strengths, weaknesses, and limitations; and how the effectiveness and efficiency of the system could be improved to satisfy the germplasm users (plant breeders, researchers) and benefit consumers and society at large. This SI provides insight into new approaches and technical developments that have revolutionised ex situ conservation and the use of germplasm and related information. It also reflects on complementary conservation approaches (in situ, on-farm, home gardens) to ex situ genebanks, as well as how-through new forms of collaboration at national, regional, and global levels and through stronger links between public genebanks-synergies between the private breeding sector and botanic garden community could be achieved to strengthen the global conservation and use system. Special attention has also been given to the governance of genetic resources and access and benefit-sharing issues that increasingly hamper the needed access to a wide range of genetic resources that is essential for plant breeders to fulfil their mission.
Collapse
|
6
|
Desta KT, Choi YM, Yoon H, Lee S, Yi J, Jeon YA, Wang X, Park JC, Kim KM, Shin MJ. Comprehensive Characterization of Global Barley ( Hordeum vulgare L.) Collection Using Agronomic Traits, β-Glucan Level, Phenolic Content, and Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:169. [PMID: 38256723 PMCID: PMC10818635 DOI: 10.3390/plants13020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
This study characterized the diversity of 367 barley collections from 27 different countries, including 5 control cultivars, using several phenotypic traits. Morphological traits, including spike type, grain morphology, cold damage, and lodging rate, exhibited wide variations. Eighteen accessions matured early, while four accessions had longer culm and spike lengths than the controls. The ranges of total phenolic content (TPC), β-glucan content, ABTS•+ scavenging activity, DPPH• scavenging activity, and reducing power (RP) were 1.79-6.79 mg GAE/g, 0.14-8.41 g/100 g, 3.07-13.54 mg AAE/100 g, 1.56-6.24 mg AAE/g, and 1.31-7.86 mg AAE/g, respectively. Betaone, one of the controls, had the highest β-glucan content. Two accessions had β-glucan levels close to Betaone. Furthermore, 20 accessions exhibited increased TPC compared to the controls, while 5 accessions displayed elevated ABTS•+ scavenging activity. Among these, one accession also exhibited higher DPPH• scavenging activity and RP simultaneously. Based on the statistical analysis of variance, all the quantitative traits were significantly affected by the difference in origin (p < 0.05). On the other hand, grain morphology significantly affected biochemical traits. Multivariate analysis classified barley accessions into eight groups, demonstrating variations in quantitative traits. There were noteworthy correlations between biochemical and agronomical traits. Overall, this study characterized several barley varieties of different origins, anticipating future genomic research. The barley accessions with superior performances could be valuable alternatives in breeding.
Collapse
Affiliation(s)
- Kebede Taye Desta
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Sukyeung Lee
- International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration, Jeonju 54875, Republic of Korea
| | - Jungyoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Young-ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Xiaohan Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jin-Cheon Park
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Kyeong-Min Kim
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|