1
|
Chen R, Chen Y, Lin K, Ding Y, Liu W, Wang S. Growth, Quality, and Nitrogen Metabolism of Medicago sativa Under Continuous Light from Red-Blue-Green LEDs Responded Better to High Nitrogen Concentrations than Under Red-Blue LEDs. Int J Mol Sci 2024; 25:13116. [PMID: 39684825 DOI: 10.3390/ijms252313116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Alfalfa is a widely grown forage with a high crude protein content. Clarifying the interactions between light quality and nitrogen level on yield and nitrogen metabolism can purposely improve alfalfa productivity in plant factories with artificial light (PFAL). In this study, the growth, quality, and nitrogen metabolism of alfalfa grown in PFAL were investigated using three nitrate-nitrogen concentrations (10, 15, and 20 mM, labeled as N10, N15, and N20) and continuous light (CL) with two light qualities (red-blue and red-blue-green light, labeled as RB-C and RBG-C). The results showed that the adaptation performance of alfalfa to nitrogen concentrations differed under red-blue and red-blue-green CL. Plant height, stem diameter, leaf area, yield, Chl a + b, Chl a, Chl b, crude protein contents, and NiR activity under the RB-CN15 treatment were significantly higher than RB-CN10 and RB-CN20 treatments. The RB-CN20 treatment showed morphological damage, such as plant dwarfing and leaf chlorosis, and physiological damage, including the accumulation of proline, H2O2, and MDA. However, the difference was that under red-blue-green CL, the leaf area, yield, and Chl a + b, carotenoid, nitrate, and glutamate contents under RBG-CN20 treatment were significantly higher than in the RBG-CN10 and RBG-CN15 treatments. Meanwhile, the contents of soluble sugar, starch, and cysteine were significantly lower. However, the crude protein content reached 21.15 mg·g-1. The fresh yield, dry yield, stomatal conductance, leaf area, plant height, stem diameter, crude protein, GS, and free amino acids of alfalfa were positively correlated with increased green light. In addition, with the increase in nitrogen concentration, photosynthetic capacity, NiR, and GOGAT activities increased, promoting growth and improving feeding value. The growth, yield, photosynthetic pigments, carbon, nitrogen substances, and enzyme activities of alfalfa were significantly affected by the interaction between nitrogen concentration and light quality, whereas leaf/stem ratio and DPPH had no effect. In conclusion, RB-CN15 and RBG-CN20 are suitable for the production of alfalfa in PFAL, and green light can increase the threshold for the nitrogen concentration adaptation of alfalfa.
Collapse
Affiliation(s)
- Ren Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Yanqi Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Kunming Lin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yiming Ding
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Wenke Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Shurong Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
2
|
Zhang M, Zhao L, Yun Z, Wu X, Wu Q. Comparative transcriptome analysis of maize ( Zea mays L.) seedlings in response to copper stress. Open Life Sci 2024; 19:20220953. [PMID: 39533982 PMCID: PMC11554555 DOI: 10.1515/biol-2022-0953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 08/08/2024] [Indexed: 11/16/2024] Open
Abstract
Copper (Cu) is considered one of the major heavy metal pollutants in agriculture, leading to reductions in crop yield. To reveal the molecular mechanisms of resistance to copper stress in maize (Zea mays L.) seedlings, transcriptome analysis was conducted on the hybrid variety Zhengdan 958 exposed to 0 (control), 5, and 10 mM Cu stress using RNA-seq. In total, 619, 2,685, and 1,790 differentially expressed genes (DEGs) were identified compared to 5 mM versus 0 mM Cu, 10 mM versus 0 mM Cu, and 10 mM versus 5 mM Cu, respectively. Functional categorization of DEGs according to Gene Ontology revealed that heme binding, defense response, and multiorganism processes were significantly enriched under copper stress. Additionally, Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that the copper stress response is mediated by pathways involving phenylpropanoid biosynthesis, flavonoid biosynthesis, and glutathione metabolism, among others. The transcriptome data demonstrated that metabolite biosynthesis and glutathione metabolism play key roles in the response of maize seedlings to copper stress, and these findings provide valuable information for enhancing copper resistance in maize.
Collapse
Affiliation(s)
- Mengyan Zhang
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lin Zhao
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Zhenyu Yun
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Xi Wu
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Qi Wu
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| |
Collapse
|
3
|
Parveen A, Atif M, Akhtar F, Perveen S, Zafar S, Hafeez K, Yasmeen N. Elucidating the protective role of manganese seed priming in mitigating lead-induced oxidative stress: enhancements in growth, grain yield, and antioxidant activities of wheat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64228-64247. [PMID: 39531105 DOI: 10.1007/s11356-024-35440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Lead (Pb) is known to be extremely toxic to plants and awfully affects growth and productivity by interacting with morphological, biochemical, and physiological processes. Micronutrients are considered to reduce ion toxicity and modify various physiological processes involved in oxidative stress tolerance in plants. Hence, the limited literature about the application of micronutrients, particularly manganese (Mn), under lead stress thus demands more investigations. To sort out the role of priming treatments of Mn (1.0 and 0.1 mg/L) in lead stress (200 mg/kg) induced oxidative stress tolerance in wheat cultivars (Anaj-17 and Akbar-19), current experiment was designed. The experiment was arranged with completely randomized design (CRD) with three replicates. The results explored the positive role of Mn priming in strengthening the antioxidant system with increased activities of antioxidants under Pb stress. Mn priming level (0.1 mg/L) significantly increased the germination percentage, germination percentage, growth traits, grain yield per plant, shoot P, shoot Ca2+, and shoot K+ while decreasing the MDA and H2O2 levels, of Anaj-17 and Akbar-19 under Pb stress (200 mg/kg). Seed priming levels of Mn further upgraded the antioxidant enzymatic activities and organic osmolytes such as proline, total phenolics, flavonoids, total soluble sugars, and glycine betaine, under Pb stress. Conclusively, the 0.1 mg/L level of Mn priming and Akbar-19 cultivar has proven superior in lead detoxification under Pb-induced oxidative stress. Furthermore, the outcomes revealed more accumulation of Pb in the roots of wheat than in the shoots of both wheat cultivars and emphasized the use of lower Mn levels of 0.1 mg/L as the best strategy in alleviating the toxic impacts of lead in wheat. However, the conduct of large field trials is a necessity of current scenario to study the molecular aspects and associated genes contributing Pb stress tolerance with priming application of Mn and other micronutrients.
Collapse
Affiliation(s)
- Abida Parveen
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Atif
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Faiza Akhtar
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Shagufta Perveen
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan.
| | - Sara Zafar
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Khadija Hafeez
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Nadia Yasmeen
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
4
|
Urošević J, Stanković D, Jokanović D, Trivan G, Rodzkin A, Jović Đ, Jovanović F. Phytoremediation Potential of Different Genotypes of Salix alba and S. viminalis. PLANTS (BASEL, SWITZERLAND) 2024; 13:735. [PMID: 38475581 DOI: 10.3390/plants13050735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Elevated concentrations of heavy metals result in soil degradation, a reduction in plant yields, and a lower quality of agricultural products, which directly endangers people, animals, and the ecosystem. The potential of three clones of Salix alba (347, NS 73/6, and B-44) and one genotype of S. viminalis for the phytoextraction of heavy metals was investigated, with the aim of identifying the most physiologically suitable willow genotypes for use in soil phytoremediation. The experiment was placed on the contaminated soil substrate collected in Kolubara Mining Basin (Serbia), enriched by high loads of heavy metal salts, and a control medium. Significant differences in the concentrations of heavy metals were recorded between the contaminated and control plant material, especially when it comes to nickel (Ni), copper (Cu), cadmium (Cd), and lead (Pb), confirming that S. alba and S. viminalis are hyperaccumulator species of heavy metals. Clone 347 shows the greatest uptake of Cd and chromium (Cr), and clone B-44 takes up these metals only to a lesser extent, while clone NS 73/6 shows a less pronounced uptake of Cr. The roots have the greatest ability to accumulate Ni and Pb, Cu is absorbed by all plant organs, while Cd is absorbed by the leaves. The organ that showed the greatest ability to accumulate heavy metals was the root, which means that willows have a limited power to translocate heavy metals to above-ground organs. The studied genotypes of S. alba have a higher potential for the phytostabilization of Cu and Cd, as well as the phytoextraction of Cd, compared with S. viminalis. The results confirm the assumption of differences between different willow genotypes in terms of the ability to phytoextract certain heavy metals from soil, which is important information when selecting genotypes for soil phytoremediation.
Collapse
Affiliation(s)
- Jelena Urošević
- Electric Power of Serbia, Balkanska 13, 11000 Belgrade, Serbia
| | - Dragica Stanković
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Dušan Jokanović
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Goran Trivan
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Aleh Rodzkin
- International Sakharov Environmental Institute, Belarusian State University, Dauhabrodskaja 23/1, 220070 Minsk, Belarus
| | - Đorđe Jović
- Institute of Forestry, Kneza Višeslava 3, 11000 Belgrade, Serbia
| | - Filip Jovanović
- Institute of Forestry, Kneza Višeslava 3, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Yang S, Ning Y, Li H, Zhu Y. Effects of Priestia aryabhattai on Phosphorus Fraction and Implications for Ecoremediating Cd-Contaminated Farmland with Plant-Microbe Technology. PLANTS (BASEL, SWITZERLAND) 2024; 13:268. [PMID: 38256821 PMCID: PMC10818761 DOI: 10.3390/plants13020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The application of phosphate-solubilizing bacteria has been widely studied in remediating Cd-contaminated soil, but only a few studies have reported on the interaction of P and Cd as well as the microbiological mechanisms with phosphate-solubilizing bacteria in the soil because the activity of phosphate-solubilizing bacteria is easily inhibited by the toxicity of Cd. This paper investigates the phosphorus solubilization ability of Priestia aryabhattai domesticated under the stress of Cd, which was conducted in a soil experiment with the addition of Cd at different concentrations. The results show that the content of Ca2-P increased by 5.12-19.84%, and the content of labile organic phosphorus (LOP) increased by 3.03-8.42% after the addition of Priestia aryabhattai to the unsterilized soil. The content of available Cd decreased by 3.82% in the soil with heavy Cd contamination. Priestia aryabhattai has a certain resistance to Cd, and its relative abundance increased with the increased Cd concentration. The contents of Ca2-P and LOP in the soil had a strong positive correlation with the content of Olsen-P (p < 0.01), while the content of available Cd was negatively correlated with the contents of Olsen-P, Ca2-P, and LOP (p < 0.05). Priestia aryabhattai inhibits the transport of Cd, facilitates the conversion of low-activity P and insoluble P to Ca2-P and LOP in the soil, and increases the bioavailability and seasonal utilization of P in the soil, showing great potential in ecoremediating Cd-contaminated farmland soil with plant-microbe-combined technology.
Collapse
Affiliation(s)
- Shenghan Yang
- Institute of Loess Plateau, Shanxi University, Taiyuan 030031, China;
- School of Environment Science and Resources, Shanxi University, Taiyuan 030031, China;
| | - Yiru Ning
- School of Environment Science and Resources, Shanxi University, Taiyuan 030031, China;
- Institute of Resources and Environment Engineering, Shanxi University, Taiyuan 030031, China
| | - Hua Li
- School of Environment Science and Resources, Shanxi University, Taiyuan 030031, China;
- Shanxi Laboratory for Yellow River, Taiyuan 030031, China
| | - Yuen Zhu
- School of Environment Science and Resources, Shanxi University, Taiyuan 030031, China;
- Shanxi Laboratory for Yellow River, Taiyuan 030031, China
| |
Collapse
|