1
|
Mai H, Liu C, Fu B, Ji X, Chen M, Zhang Y, Lin Y, Chen J, Song Y, Gu S. Carnosic acid attenuates diabetic retinopathy via the SIRT1 signaling pathway: neuroprotection and endothelial cell preservation. Am J Transl Res 2025; 17:2293-2310. [PMID: 40225985 PMCID: PMC11982880 DOI: 10.62347/fknz9461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE To explore the therapeutic effects of Carnosic acid (CA) on diabetic retinopathy (DR), a complication of diabetes mellitus (DM) characterized by retinal neuronal damage induced by oxidative stress. METHODS DR was induced in rodent models via streptozotocin (STZ) administration, while human retinal microvascular endothelial cells (HRMECs) were cultured in high-glucose (HG) conditions. The effects of CA on oxidative stress, inflammation, and apoptotic signaling were evaluated by quantifying relevant biomarkers. RESULTS CA treatment significantly increased the expression of sirtuin 1, which was reduced in both STZ-treated rats and HG-exposed HRMECs, as confirmed by polymerase chain reaction (PCR) analysis. CA alleviated oxidative stress, inflammation, and apoptosis in STZ-induced DR models. In vitro, CA exhibited a dose-dependent enhancement of SIRT1 expression, providing substantial protection against HG-induced damage in HRMECs. This protective effect involved the suppression of oxidative mediators, reduction of pro-inflammatory cytokine release, and inhibition of apoptotic pathways. Additionally, CA prevented retinal ferroptosis by activating the SIRT1/p53/solute carrier family 7 member 11 (SLC7A11) pathway both in vivo and in vitro. CONCLUSION This study suggests that CA alleviates DR by activating SIRT1, leading to decreased inflammation, apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Huade Mai
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Chenghong Liu
- Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Biwei Fu
- Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Xinbo Ji
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Minghui Chen
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Yunbo Zhang
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Yunyun Lin
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Juming Chen
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Yanling Song
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Shenhong Gu
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| |
Collapse
|
2
|
Er-Rajy M, El Fadili M, Zarougui S, Mujwar S, Aloui M, Zerrouk M, Hammouti B, Rhazi L, Sabbahi R, Alanazi MM, Azzaoui K, Salghi R, Elhallaoui M. Design and evaluation of novel triazole derivatives as potential anti-gout inhibitors: a comprehensive molecular modeling study. Front Chem 2025; 13:1518777. [PMID: 40115054 PMCID: PMC11922854 DOI: 10.3389/fchem.2025.1518777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/30/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Gout is the most common inflammatory arthritis, characterized by hyperuricemia, tophus formation, joint disease, and kidney stones. Uric acid, the final byproduct of purine catabolism, is eliminated via the kidneys and digestive system. Xanthine oxidase (XO) catalyzes the conversion of hypoxanthine and xanthine into uric acid, making XO inhibitors crucial for treating hyperuricemia and gout. Currently, three XO inhibitors are clinically used, showing significant efficacy. A molecular modeling study on triazole derivatives aims to identify novel XO inhibitors using 3D-QSAR, molecular docking, MD simulations, ADMET analysis, and DFT calculations. These computational approaches facilitate drug discovery while reducing research costs. Methods Our work focuses on a series of synthesized anti-xanthine oxidase inhibitors, aiming to develop new inhibitors. A computational study was carried out to identify the xanthine oxidase inhibitory structural features of a series of triazole inhibitors using computational method. Results A model based on CoMFA and CoMSIA/SEA has been built to predict new triazole derivatives. Discussion The optimal model established from CoMFA and CoMSIA/SEA was successfully evaluated for its predictive capability. Visualization of the contour maps of both models showed that modifying the substituents plays a key role in enhancing the biological activity of anti-gout inhibitors. Molecular docking results for complexes N°8-3NVY and N°22-3NVY showed scores of -7.22 kcal/mol and -8.36 kcal/mol, respectively, indicating substantial affinity for the enzyme. Complex N°8-3NVY forms two hydrogen bonds with SER 69 and ASN 71, three alkyl bonds with ALA 70, LEU 74, and ALA 75, and one Pi-Pi T-shaped bond with PHE 68. Complex N°22-3NVY forms three hydrogen bonds with HIS 99, ARG 29, and ILE 91, and one halogen bond with LEU 128 at 3.60 Å. A MD study revealed that the N°22-3NVY complex remained highly stable throughout the simulation. Therefore, we proposed six new molecules, their anti-gout inhibitory activities were predicted using two models, and they were evaluated for Lipinski's rule, and ADMET properties. The results show that both Pred 4 and Pred 5 have better pharmacokinetic properties than the height potent molecule in the studied series, making these two compounds valuable candidates for new anti-gout drugs. Subsequently, using DFT study to evaluate the chemical reactivity properties of these two proposed compounds, the energy gap results revealed that both molecules exhibit moderate chemical stability and reactivity.
Collapse
Affiliation(s)
- Mohammed Er-Rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Euromed University of Fes, UMF, Fez, Morocco
| | - Mohamed El Fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sara Zarougui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Mourad Aloui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Zerrouk
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | | | - Larbi Rhazi
- Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais, France
| | - Rachid Sabbahi
- Research Team in Science and Technology, Higher School of Technology, Ibn Zohr University, Laayoune, Morocco
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalil Azzaoui
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Industrial Engineering, Energy and the Environment (LI3E) SUPMTI, Rabat, Morocco
| | - Rachid Salghi
- Laboratory of Applied Chemistry and Environment, National School of Applied Sciences, University Ibn Zohr, Agadir, Morocco
| | - Menana Elhallaoui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
3
|
Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman D, Karaman R. Promising Natural Remedies for Alzheimer's Disease Therapy. Molecules 2025; 30:922. [PMID: 40005231 PMCID: PMC11858286 DOI: 10.3390/molecules30040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the intricacies of Alzheimer's disease (AD), its origins, and the potential advantages of various herbal extracts and natural compounds for enhancing memory and cognitive performance. Future studies into AD treatments are encouraged by the review's demonstration of the effectiveness of phytoconstituents that were extracted from a number of plants. In addition to having many beneficial effects, such as improved cholinergic and cognitive function, herbal medicines are also much less harmful, more readily available, and easier to use than other treatments. They also pass without difficulty through the blood-brain barrier (BBB). This study focused on natural substances and their effects on AD by using academic databases to identify peer-reviewed studies published between 2015 and 2024. According to the literature review, 66 phytoconstituents that were isolated from 21 distinct plants have shown efficacy, which could be encouraging for future research on AD therapies. Since most clinical trials produce contradictory results, the study suggests that larger-scale studies with longer treatment durations are necessary to validate or refute the therapeutic efficacy of herbal AD treatments.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Department of Chemistry, Birzeit University, West Bank, Ramallah 00972, Palestine;
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Aseel Wasel Ghanem
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Sara AbuMadi
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Dania Thaher
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Weam Jaghama
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Donia Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
4
|
Alshahateet SF, Altarawneh RM, Al-Trawneh SA, Al-Saraireh YM, Al-Tawarh WM, Abuawad KR, Abuhalaweh YM, Zerrouk M, Mansour AA, Salghi R, Hammouti B, Merzouki M, Sabbahi R, Rhazi L, Alanazi MM, Azzaoui K. Cheminformatics-based design and biomedical applications of a new Hydroxyphenylcalix[4] resorcinarene as anti-cancer agent. Sci Rep 2024; 14:30460. [PMID: 39672820 PMCID: PMC11645408 DOI: 10.1038/s41598-024-82115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024] Open
Abstract
The distinct conformational characteristics, functionality, affordability, low toxicity, and usefulness make calixarene-based compounds a promising treatment option for cancer. The aim of the present study is to synthesize a new calixarene-based compound and assess of its anticancer potential on some human cancer cells. The synthesized C-4-Hydroxyphenylcalix[4] resorcinarene (HPCR) was characterized by several spectroscopic techniques such as 1HNMR, 13CNMR, and X-ray crystallographic analysis to confirm its purity and identity. IC50 values were identified for cancer cell lines (U-87, MCF-7, A549) and human dermal fibroblasts cell line (HDF) after treatment with HPCR and the standard drug Cisplatin. A significant selective growth inhibitory activity against U-87 and A549 cell lines was obtained at an HPCR concentration of 100 μM. The MOE docking module (version 2015) was utilized to assess the extent of inhibition for HPCR compound against four cancer-related proteins (3RJ3, 7AXD, 6DUK, and 1CGL).
Collapse
Affiliation(s)
- S F Alshahateet
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan.
| | - R M Altarawneh
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - S A Al-Trawneh
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Y M Al-Saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - W M Al-Tawarh
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - K R Abuawad
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Y M Abuhalaweh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - M Zerrouk
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohammed Ben Abdellah University, 30000, Fez, Morocco
| | - A Ait Mansour
- Laboratory of Applied Chemistry and Environment, ENSA, University Ibn Zohr, P.O. Box 1136, 80000, Agadir, Morocco
| | - R Salghi
- Laboratory of Applied Chemistry and Environment, ENSA, University Ibn Zohr, P.O. Box 1136, 80000, Agadir, Morocco
| | - B Hammouti
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes, UEMF, 30030, Fez, Morocco
- Laboratory of Industrial Engineering, Energy and the Environment (LI3E) SUPMTI, Rabat, Morocco
| | - M Merzouki
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed 1st University, Oujda, Morocco
| | - R Sabbahi
- Research Team in Science and Technology, Higher School of Technology, Ibn Zohr University, P.O. Box 3007, Laayoune, Morocco
| | - L Rhazi
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - K Azzaoui
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohammed Ben Abdellah University, 30000, Fez, Morocco
| |
Collapse
|
5
|
Salih HM, Amachawadi RG, Kang Q, Li Y, Nagaraja TG. In-Vitro Antimicrobial Activities of Grape Seed, Green Tea, and Rosemary Phenolic Extracts Against Liver Abscess Causing Bacterial Pathogens in Cattle. Microorganisms 2024; 12:2291. [PMID: 39597680 PMCID: PMC11596820 DOI: 10.3390/microorganisms12112291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Liver abscesses, which occur in finishing cattle, are of significant economic concern to the feedlot industry. The causative agents include both Fusobacterium necrophorum subspecies (F. necrophorum and F. funduliforme), Trueperella pyogenes (T. pyogenes), and Salmonella enterica serotype Lubbock (S. Lubbock). Tylosin, a macrolide antibiotic, is supplemented in the feed to reduce liver abscesses. However, due to the concern with emergence of antimicrobial resistance, the antimicrobial activities of the plant-based phenolic compounds could be an antibiotic alternative to control liver abscesses. We investigated the inhibitory activities of phenolic compounds extracted from grape seed, green tea, and rosemary on liver-abscess-causing bacterial pathogens. Total phenolic content was determined spectrophotometrically. Anaerobic Brain-Heart Infusion broth (for Fusobacterium) and Muller-Hinton broth (for S. enterica and T. pyogenes) with phenolic extracts at 0, 0.1, 1, and 2 mg/mL were prepared. Growth was measured at 0, 12, 24 and 48 h by determining bacterial concentrations. A micro-broth dilution method was used to quantify the inhibition. Grape seed and green tea phenolics inhibited growth of both Fusobacterium subspecies, T. pyogenes and S. enterica. Green tea at 1 mg/mL concentration was more effective in inhibiting the growth of Fusobacterium when compared to grape seed and rosemary. Green tea at 2 mg/mL was more effective than at 1 mg/mL against Salmonella. The inhibitory effect was dose-dependent, which was consistent across all strains within the same bacterial species. The phenolic extracts were inhibitory against T. pyogenes with minimum inhibitory concentration ranging from 6.25 to 12.5 µg/mL. Among the phenolic extracts tested, green tea showed the most potent activity, suggesting its strong potential as a natural alternative to conventional antibiotics. Plant-based phenolic compounds supplemented in the feed may have the potential to control liver abscesses.
Collapse
Affiliation(s)
- Harith M. Salih
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Qing Kang
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506, USA;
| | - Yonghui Li
- Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| | - Tiruvoor G. Nagaraja
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
6
|
Czerwińska K, Radziejewska I. Rosmarinic Acid: A Potential Therapeutic Agent in Gastrointestinal Cancer Management-A Review. Int J Mol Sci 2024; 25:11704. [PMID: 39519255 PMCID: PMC11546295 DOI: 10.3390/ijms252111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Gastrointestinal cancers are still the leading cause of death worldwide. This is related, among other things, to the non-specific symptoms, especially in the initial stages, and also to the limited possibilities for treatment. Therefore, research is still being conducted to improve the detection of this type of cancer and increase the effectiveness of therapy. The potential application of natural compounds in cancer management deserves special attention. In the group of such products, there are polyphenolic compounds that reveal, e.g., anti-oxidative, anti-carcinogenic, anti-inflammatory, anti-diabetic, and neuroprotective properties. One of these polyphenols is rosmarinic acid, commonly found in plants such as the Boraginaceae and Nepetoideae subfamilies of the Lamiaceae (mint) family. A number of studies have considered the positive effects of rosmarinic acid in the treatment of many cancers, including gastrointestinal ones such as oral, stomach, pancreas, colon, and liver cancers. The main aim of this paper was to summarize the mechanisms of action of rosmarinic acid in gastrointestinal cancers.
Collapse
Affiliation(s)
| | - Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| |
Collapse
|
7
|
Bejenaru LE, Biţă A, Mogoşanu GD, Segneanu AE, Radu A, Ciocîlteu MV, Bejenaru C. Polyphenols Investigation and Antioxidant and Anticholinesterase Activities of Rosmarinus officinalis L. Species from Southwest Romania Flora. Molecules 2024; 29:4438. [PMID: 39339433 PMCID: PMC11434282 DOI: 10.3390/molecules29184438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Rosemary is one of the most important medicinal plants for natural therapy due to its multiple pharmacological properties, such as antioxidant, anti-inflammatory, neuroprotective, antiproliferative, antitumor, hepato- and nephroprotective, hypolipidemic, hypocholesterolemic, antihypertensive, anti-ischemic, hypoglycemic, radioprotective, antimicrobial, antiviral, antiallergic, and wound healing properties. Our study reports for the first time, over a 12-month period, the identification and quantification of polyphenols and the investigation of the antioxidant and acetylcholinesterase (AChE) inhibitory activities of the Rosmarinus officinalis L. species harvested at flowering from the flora of southwestern Romania (Oltenia Region). Identification and quantification of polyphenolic acids was made by ultra-high-performance liquid chromatography/mass spectrometry (UHPLC/MS). Total phenolic content was determined using the spectrophotometric method. In situ antioxidant and anticholinesterase activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and AChE inhibitory assay, respectively, on high-performance thin-layer chromatography (HPTLC) plates. DPPH radical scavenging activity was also assessed spectrophotometrically. The results revealed significant correlations between specific polyphenolic compounds and the measured biological activities, understanding the role of seasonal variations and providing insights into the optimal harvesting times and medicinal benefits of rosemary. Our research brings new information on the phytochemical profile of R. officinalis as a natural source of polyphenols with antioxidant and AChE inhibitory properties.
Collapse
Affiliation(s)
- Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM-WUT), 4 Oituz Street, 300086 Timişoara, Romania
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| |
Collapse
|
8
|
Ouahabi S, Daoudi NE, Loukili EH, Asmae H, Merzouki M, Bnouham M, Challioui A, Hammouti B, Fauconnier ML, Rhazi L, Ayerdi Gotor A, Depeint F, Ramdani M. Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts. Mar Drugs 2024; 22:240. [PMID: 38921551 PMCID: PMC11204821 DOI: 10.3390/md22060240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
In this research, the chemical compositions of various extracts obtained from Ulva lactuca, a type of green seaweed collected from the Nador lagoon in the northern region of Morocco, were compared. Their antioxidant and anti-diabetic properties were also studied. Using GC-MS technology, the fatty acid content of the samples was analyzed, revealing that palmitic acid, eicosenoic acid, and linoleic acid were the most abundant unsaturated fatty acids present in all samples. The HPLC analysis indicated that sinapic acid, naringin, rutin, quercetin, cinnamic acid, salicylic acid, apigenin, flavone, and flavanone were the most prevalent phenolic compounds. The aqueous extract obtained by maceration showed high levels of polyphenols and flavonoids, with values of 379.67 ± 0.09 mg GAE/g and 212.11 ± 0.11 mg QE/g, respectively. This extract also exhibited an impressive ability to scavenge DPPH radicals, as indicated by its IC50 value of 0.095 ± 0.12 mg/mL. Additionally, the methanolic extract obtained using the Soxhlet method demonstrated antioxidant properties by preventing β-carotene discoloration, with an IC50 of 0.087 ± 0.14 mg/mL. Results from in-vitro studies showed that extracts from U. lactuca were able to significantly inhibit the enzymatic activity of α-amylase and α-glucosidase. Among the various extracts, methanolic extract (S) has been identified as the most potent inhibitor, exhibiting a statistically similar effect to that of acarbose. Furthermore, molecular docking models were used to evaluate the interaction between the primary phytochemicals found in these extracts and the human pancreatic α-amylase and α-glucosidase enzymes. These findings suggest that U. lactuca extracts contain bioactive substances that are capable of reducing enzyme activity more effectively than the commercially available drug, acarbose.
Collapse
Affiliation(s)
- Safae Ouahabi
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (S.O.); (H.A.); (M.M.); (A.C.); (M.R.)
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (N.E.D.); (M.B.)
- Higher Institute of Nursing Professions and Health Techniques, Oujda 60000, Morocco
| | - El Hassania Loukili
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes (UEMF), Fes 30000, Morocco; (E.H.L.); (B.H.)
| | - Hbika Asmae
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (S.O.); (H.A.); (M.M.); (A.C.); (M.R.)
| | - Mohammed Merzouki
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (S.O.); (H.A.); (M.M.); (A.C.); (M.R.)
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (N.E.D.); (M.B.)
| | - Allal Challioui
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (S.O.); (H.A.); (M.M.); (A.C.); (M.R.)
| | - Belkheir Hammouti
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes (UEMF), Fes 30000, Morocco; (E.H.L.); (B.H.)
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech. 2, Passage des Déportés, B-5030 Gembloux, Belgium;
| | - Larbi Rhazi
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, UniLaSalle, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France;
| | - Alicia Ayerdi Gotor
- Institut Polytechnique UniLaSalle, AGHYLE, UP 2018.C101, UniLaSalle, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France;
| | - Flore Depeint
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, UniLaSalle, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France;
| | - Mohammed Ramdani
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (S.O.); (H.A.); (M.M.); (A.C.); (M.R.)
| |
Collapse
|
9
|
Zurita A, Vega Hissi E, Cianci Romero A, Luján AM, Salido S, Yaneff A, Davio C, Cobo J, Carpinella MC, Enriz RD. Rosmarinic Acid Present in Lepechinia floribunda and Lepechinia meyenii as a Potent Inhibitor of the Adenylyl Cyclase gNC1 from Giardia lamblia. PLANTS (BASEL, SWITZERLAND) 2024; 13:646. [PMID: 38475493 DOI: 10.3390/plants13050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Giardiasis is a parasitosis caused by Giardia lamblia with significant epidemiological and clinical importance due to its high prevalence and pathogenicity. The lack of optimal therapies for treating this parasite makes the development of new effective chemical entities an urgent need. In the search for new inhibitors of the adenylyl cyclase gNC1 obtained from G. lamblia, 14 extracts from Argentinian native plants were screened. Lepechinia floribunda and L. meyenii extracts exhibited the highest gNC1 inhibitory activity, with IC50 values of 9 and 31 µg/mL, respectively. In silico studies showed rosmarinic acid, a hydroxycinnamic acid present in both mentioned species, to be a promising anti-gNC1 compound. This result was confirmed experimentally, with rosmarinic acid showing an IC50 value of 10.1 µM. Theoretical and experimental findings elucidate the molecular-level mechanism of rosmarinic acid, pinpointing the key interactions stabilizing the compound-enzyme complex and the binding site. These results strongly support that rosmarinic acid is a promising scaffold for developing novel compounds with inhibitory activity against gNC1, which could serve as potential therapeutic agents to treat giardiasis.
Collapse
Affiliation(s)
- Adolfo Zurita
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, San Luis 5700, Argentina
| | - Esteban Vega Hissi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, San Luis 5700, Argentina
| | - Agostina Cianci Romero
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, San Luis 5700, Argentina
| | - Adela María Luján
- Laboratorio de Química Fina y Productos Naturales, Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE) CONICET-UCC, Universidad Católica de Córdoba, Avda. Armada Argentina 3555, Córdoba X5016DHK, Argentina
| | - Sofía Salido
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires C1113AAD, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires C1113AAD, Argentina
| | - Justo Cobo
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - María Cecilia Carpinella
- Laboratorio de Química Fina y Productos Naturales, Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE) CONICET-UCC, Universidad Católica de Córdoba, Avda. Armada Argentina 3555, Córdoba X5016DHK, Argentina
| | - Ricardo Daniel Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, San Luis 5700, Argentina
| |
Collapse
|